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Preface

This presentation of time series analysis techniques has been devel-
oped by the author in the process of teaching (since 1971) a graduate
level course on the subject to scientists, engineers, and computer an-
alysts at NASA Langley Research Center. The intent is to develop,
from the beginning, the basic understanding necessary to properly ap-
ply modern spectral analysis techniques. The subject rests on a firm
foundation in the theory of probability, which will be reviewed in this
monograph. Thus, the only prerequisites are an ordinary engineering
knowledge of calculus and some acquaintance with linear system theory.
However, familiarity with random process theory, as provided in Prob-
ability, Random Variables, and Stochastic Processes by Papoulis, and
with Fourier analysis techniques, as provided in The Fourier Transform
and [ts Applications by Bracewell, would be helpful.

Although there are many textbooks on time series analysis, several of
which the author has used in his courses, this monograph takes a differ-
ent approach from most. First, the theory in this presentation has been
developed, insofar as possible, for continuous data. This postpones the
inevitable use of discrete mathematics, which the author believes tends
to obscure physical understanding, until after the reader has gained
some familiarity with the concepts. Only then are the computational
details for digital data introduced. Second, the author assumes that
most readers will have access to either standard computer software or
hard-wired spectral analyzers to do the work of computation. One big
danger of such standard analysis techniques, however, is that they will
always yield an output, even if the input does not satisfy the assump-
tions on which the analysis is based. Thus, this monograph seeks to
provide the theoretical overview necessary to correctly apply the full
range of these powerful techniques. Finally, time series analysis is a
vast and rapidly changing field. In an attempt to remain complete
and current, the last chapter introduces the reader to many specialized
techniques and areas where research is presently in progress.

The author would like to express his appreciation to William E.
Zorumski and Stephen K. Park, who worked almost as hard in reviewing
this manuscript as the author did in writing it.

Jay C. Hardin
NASA Langley Research Center

Hampton, VA 23665-5225 PRECEDING PAGE BLANK NOT FILMED
July 16, 1985
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Chapter |
Introduction

Consider a record of length T of a real function f(¢) as shown in
figure 1. By convention, the independent variable is called “time.”
although it need not actually be time. Instead, the function may depend
on distance or angle or any other variable of interest. The data record
shown is of finite length, since that is all that is ever available in the real
world, and need not be continuous but may, in fact, consist of digital
data taken at a set of discrete times. This monograph will be concerned
with the development, interpretation, and use of various techniques to
extract information from such a record.

f(t)

N A /S
vV V

“WooT

Figure 1. Record of finite length of real function f(¢).

1.1 Why Harmonic Analysis?

Many time series analysis techniques involve harmonic analysis, that
is. decomposition of the record f(t) into a collection of sines and cosines
of various frequencies. Before considering these techniques, it is relevant
to ask why it would ever be necessary or advantageous to represent a
function by harmonic functions. Certainly many records of interest look
very different from the well-behaved periodic sine and cosine functions.
There are at least three answers to this question.

Simple input/output relations for linear systems. Cousider a signal
z(t) that is passed through a linear, shift-invariant physical system to
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Introduction to Time Series Analysis

Linear

System > y(t)

x(t) —p!

Figure 2. Schematic of linear system.

produce an output signal y(¢) as shown in figure 2. Although the input
and output are related by a convolution integral in the time domain. the
harmonic representations of the input X(w), where w is the frequency
in radians per second, and the output Y (w) are related by the simple
expression

Y(w) = Hw)X(w) (1.1)

where H(w) is called the frequency response function for the system.
This fact, which is known as the convolution theorem, is the basis of
many techniques for the solution of differential and integral equations
and is an aid to understanding the response of linear systems.

Ease of interpretation (diagnostics). Many time signals are not easily
analyzed in the time domain. For example, figure 3 displays the voltage
output time history of a microphone recording the noise radiated by a
supersonic jet operating in an off-design condition. Such time histories
are nearly unintelligible. However, although the time and frequency
domain representations contain precisely the same information in the
sense that one may be recovered from the other by integration, the
generation and potential effects of a signal may often be more easily
understood in the frequency domain. For example, figure 4 shows the
power spectral density, as a function of frequency, for the time history
in figure 3. From the frequency domain perspective in figure 4. it can
be seen that most of the power in the signal is concentrated near 5 kHz.
In addition, a screech tone, caused by oscillation of the shocks in the jet
due to a natural instability of the jet plume, is apparent near 5.2 kHz.

Another dramatic example of such analysis was given by Blackman
and Tukey! in Measurement of Power Spectra when they quoted a letter
from Walter E. Munk: “... we were able to discover in the general
wave record a very weak low-frequency peak which would surely have
escaped our attention without spectral analysis. This peak, it turns out.
is almost certainly due to a swell from the Indian Ocean, 10,000 miles
distant. Physical dimensions are: 1 mm high, a kilometer long.”

2
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Chapter I Introduction
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Introduction to Time Series Analysis

Because of their ability to extract information from highly variable
records, spectral analysis techniques are widely applied in fluid dy-
namics, acoustics, and vibration. In addition, such analyses are read-
ily accomplished with either modern digital computers or specialized
hardware.

Ease of simulation. Often it is necessary or desirable to excite a
system with a particular time history or class of time histories, either
in the laboratory or on a computer. However, it is not practical
to develop an excitation system for each individual signal. Thus.
if the signal can be decomposed into its constituent harmonics and
ordinary oscillators (or harmonic functions on a computer) used to
produce the excitation, simulation becomes appreciably easier and less
expensive. This technique is used by electrodynamic shakers in missile
and automobile vibration testing, for example.

" 1.2 Deterministic or Random?

An important question in the extraction of information from a record
like that shown in figure 1 is as follows: Is the record unique or is
it merely representative of an ensemble of records which might have
been obtained? For example, a smoother version of figure 1 might be
a record of the elevation as a function of distance along the track of
an amusement park ride. If one were designing a cart to traverse that
particular track, then this would be the unique (deterministic) record of
interest. On the other hand, figure 1 might be a record of the vertical
gust velocity as a function of time experienced by an aircraft flving
through a thunderstorm. If one were designing an airplane, then the
record would be viewed as merely representative of an ensemble of data
that might have been obtained in many different thunderstorms. In this
random case, the particular properties of the record at hand are not as
interesting as the average properties of the whole ensemble of records
which might have been obtained. To discuss such data, the concept of
a random process must be introduced.

Although many of the techniques developed in this monograph
are equally applicable to deterministic data records, the monograph
will primarily be concerned with the extraction of information from
records that may be considered sample functions of random processes.
The analysis of such nondeterministic records is a rapidly changing
field with new techniques being devised continually. It is also a field
requiring sound engineering judgment in the application of techniques
and interpretation of results; many pitfalls await the unwary. It is hoped
that this monograph will give the reader the understanding necessary

4
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Chapter I Introduction

for the proper application and interpretation of time series analysis
techniques.
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Chapter I1
Harmonic Analysis

Although several seemingly different forms of harmonic analysis are
in common use today, they are all special cases of what is now called
generalized harmonic analysis. While this monograph will occasionally
require use of the full power of this elegant theory, for the most part, the
ordinary idea of a Fourier transform as developed in advanced calculus
courses will suffice.

2.1 Fourier Transform Pair
If a function f(t) is such that the integral

* £l
/;oo (-]-.—:—22_)“ dt (2.1)
converges for some a > 0, then f(t) may be written
o) = / ® Flw) et du (2.2)
where | oo
Flw) = o /_ . f(t) e~ ™t gt (2.3)

is called the Fourier integral transform? of f(t). If the variable ¢ is
actually time, then w is the frequency in radians per second. Since
e'wt = coswt + isinwt, equation (2.2) provides a representation of
the function f(t) in terms of the periodic sine and cosine functions.
Equations (2.2) and (2.8) form what is called a Fourier transform
pair and are the fundemental Fourier transform pair that unll be used
throughout this monograph.

As will be discussed further in chapter IV, one has considerable
freedom in defining a Fourier transform pair. In particular, the

o 7
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Introduction to Time Series Analysis

factor (27)~! may be placed before either the time or the frequency
integration. The reason for the above choice is that it allows the total
power in a random process to be obtained by integrating its power
spectral density over all frequencies with no proportionality factor
required. The inherent simplicity and elegance of this relationship
seems to the author to be worthy of achieving. On the other hand.
with the above definition of a transform pair, the (27)~! factor must be
reserved for the frequency integration in defining the frequency response
function of a linear, shift-invariant system, in order to preserve the
simplicity of fundamental relations such as equation (1.1). Thus, this
monograph will violate the above convention in the single case of a
frequency response function.

The Fourier integral representation for the function f(t) (eq. {2.2))
converges to f(t) at every point where f(t) is continuous. If f(t) is
discontinuous at some point ¢ = tg, then the integral in equation (2.2)

will converge to

f(tg) + fltg)
)

the average of the right- and left-hand limits of f(t) at ¢ = tg, provided
that these limits exist.

2.2 Examples

The Fourier integral (eq. (2.2)) has different characteristics depen-
dent on the properties of f(¢t). Consider the following special cases.

Transient functions. If f(t) is bounded and approaches zero as
{t] — oo, it certainly satisfies the condition that integral (2.1) converge
for @ > 0. In this case, F(w) is an ordinary (often complex) continuous
function. For example, if

=] (¢ 20)
o) = {0 (Otherwise)

where 3 is real and positive, then
F(w)=(8+1iw)" /27
which is complex. If the magnitude of F(w),

|F(w)| = (8% +w?)~Y2/2n
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Chapter II Harmonic Analysis

[Fee)|

@

Figure 5. Fourier transform of transient function.

is plotted as shown in figure 5, it can be seen that f(t) is represented
by harmonic functions having a continuum of frequencies.

Periodic functions. If f(t) is bounded and periodic with period p,
it again satisfies the condition associated with integral (2.1). However,
unlike the situation illustrated in figure 5, F(w) is nonzero only at a
discrete set of frequencies. To see this, note that periodic functions may
be expanded in the familiar Fourier series, that is,

oo
fie) = 2, Z (an coswnt + by sinwnt)
2
n=1
where wn = 2n7/p. This series also converges to f(t) at all points
where f(t) is continuous. Introducing the mathematically convenient
concept of negative frequencies allows this series to be written as

(e ]
fle)= D Fpemt (2.4)
n==o0Q
where . -
Fp= Bn — bn = -/ f(t)e""""‘ dt (2.5)
2 pJo
and w—p = —wn.

Now, consider the so-called Dirac delta function §(w — «’), which is
defined by the relations,

Sw=-uw)=0 (w# W)
and

| o) bt - o) du = o)

—-Q0

where g(w) is any “fairly good” function,3 that is, differentiable and
well behaved at infinity. Most functions met in the real world are of

r...a
e
r-'d
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Introduction to Time Series Analysis

this class. The delta function, which is defined by its integral property
above, is actually a generalized function; that is, it lies outside the class
of ordinary functions. It may be envisioned as the limit as Aw — 0 of
the rectangular function '

A (w-w'] < %)

D(w=-ud) = {

0 (Otherwise)
whose width is Aw, whose height is 1/Aw, and whose integral is unity.
As Aw — 0, the amplitude of this function grows without bound, but its
integral is unchanged. The delta function has a long and controversial
history, being first introduced without proper mathematical justifica-
tion by those who found it exceedingly convenient. Only in recent vears
has it been placed on a rigorous foundation?® to the satisfaction of the
mathematicians.

The delta function arises in the analysis of periodic functions because
periodic functions are not square integrable; that is. [°° f 2(t) dt
is unbounded if f(t) is periodic. As the existence of this integral
is a requirement for the nongeneralized Fourier transform to exist.’
harmonic analysis of such functions must rely on the full power of
generalized harmonic analysis. From the definition of the delta function.

it can be seen that the function f(t) = et may be expressed as
., oo ‘
ft)y=evt= / S{w — ') et dw
-0

If this relation is compared with equation (2.2), it follows that the
Fourier transform of f(t) = et is

F(w) =6(w=-u")

Thus, by equation (2.3), the highly useful relation

bw=-u') = — /co e~ Hw=wt gy
271 J—xo

(2.6)

is derived. This equation is of fundamental importance and will be used
many times in this monograph.

As an example, only because of equation (2.6) is it possible to
develop the Fourier integral transform of a periodic function. If
equation (2.4) is used in equation (2.3) and equation (2.6) is applied.

10
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Chapter II Harmonic Analysis
|F(w) |
Bl Fol
2 F. 2
Bl ol Rl

T

Figure 6. Fourier transform of periodic function.

then o
Fw)= Y Fnb(w=uwn) (2.7)

n=-00

which can be seen to be nonzero only at a discrete set of equally spaced
frequencies. Thus, the Fourier transform of a periodic function has a
discrete structure. The magnitude of this relation is shown in figure 6,
since the Fy's are generally complex. In this figure, the arrows have
been used to represent the delta functions. It should be mentioned that,
even though the delta functions are unbounded, discrete transforms
are generally plotted as an amplitude spectrum with the height of the
arrow indicating the coefficient magnitude, |Fy|, which is actually the
contribution to the integral of the spectrum at the frequency w = wn.
Such amplitude spectra are even functions of w since

Fop=F

2.3 Convolution Theorems

One property of the Fourier integral transform that will be used
repeatedly in this monograph is its ability to transform products.
Consider the transform of the product of two time functions:

2 | f®a0 et ae

If the individual time functions f(t) and ¢(t) have Fourier integral
transforms F(w) and G(w), respectively, then

£(t) = /_ : F(w) € du

11
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Introduction to Time Series Analysis

and o A
a(t) =/_°° Glw) et du

These relations allow the transform of the product to be written
— f ” f(tg() e
27 /-0 g
1 Q0 —iwt oC ’ ’ 't oo " ” e
=—/ dte “"/ du' F(u') e / d" G(w") e
r /oo -o00 -00
o x 1 [« <] . ’ "
= [T [T a Pe) o [ demtummane
-0 -0 27 /oo

where the last integral may be recognized from equation (2.6) as
6(w — ' — w"). Thus, carrying out the integration over either ./ or
w” yields the fundamental relation

5 [ fate et e

= [ # PG = = [T al P -en |,

called the frequency convolution theorem.* Often this theorem is
written

f(t)g(t) — F(w) » G(w)

where the asterisk indicates convolution and the double-headed arrow
indicates a Fourier transform pair. In words, this theorem states that
the Fourier integral transform of the product of two time functions is
equal to the convolution integral of the Fourier integral transforms of
the two functions in the frequency domain. This result will be applied
extensively throughout this monograph.

A converse of this theorem, called the time convolution theorem.*
may also be developed. The Fourier transform of a convolution integral
in the time domain

[ : f(P)g(t = 1) dr = £(t) = g(2)
satisfies the theorem
£(8) » () — 27 F(w0)G(w) (2.9)

12
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Chapter I[I Harmonic Analysis

that its Fourier transform is given by 2x times the product of the Fourier
transforms of the individual functions f(t) and g¢(¢). This theorem
greatly simplifies the application of Fourier transforms in linear, shift-
invariant systems.

With the definition of the fundamental Fourier transform pair and
some understanding of its properties, the tools are available to begin
consideration of the application of harmonic analysis to time histories
that may be considered to result from random phenomena.

13
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Chapter I11
Random Process Theory

The theoretical foundation underlying the harmonic analysis of
random time histories is random process theory. For much of the
actual practice of such analysis, this foundation is buried so deeply
that the user may not even be aware of its existence. However, proper
understanding and application of time series analysis techniques require
its consideration.

3.1 The Concept of a Random Process

The subject of all random analyses is an experiment &, which could
be performed repeatedly, at least conceptually. For example, one might
test an aircraft part to failure in fatigue. Each performance of such
an experiment is called a trial and its result is an outcome ¢. If it is
tmpossible to predict, independent of the number of times the ezperiment
has been performed previously, what the result of a given trial unll be,
the erperiment is said to be random. In this case, there are more
than one and, perhaps, an infinite number of possible outcomes to the
experiment. The set of all possible outcomes is called the sample space
S = {¢1,¢2,...} of the experiment. In the real world, the sample space
generally contains an uncountable number of possible outcomes. In
analyzing the experiment, an attempt is made to statistically describe
this whole set of possible outcomes.

Now, consider an operator that yields a function z(t) of the parame-
ter ¢ for each outcome of the experiment, such as a strain gage measuring
the strain at some point on the specimen as a function of time in the
fatigue test mentioned above. This operation is shown schematically in
figure 7. One time history z;(t) is related to each outcome ¢; of the
experiment £. The ensemble of all possible time functions that might
be obtained in this way, X(¢;¢), is called a random process. Three of
the possible time histories included in this ensemble are shown in fig-
ure 7. The single function obtained on a given trial is called a sample
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Introduction to Time Series Analysis

(1)
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Figure 7. Schematic of a random process.

function, or realization, of the random process. For example. the ex-
periment might be launching the Space Shuttle and the operator might
be a pressure sensor mounted somewhere on the fuselage. Although
the gross characteristics of the pressure signal would be predictable de-
terministically, there will be random variations due to wind loading,
fuel burn rates, etc. Thus, the pressure time history produced by this
transducer on a given launch would be a sample function from the ran-
dom process made up of all possible pressure time histories that might
be produced in this way, some of which have occurred on past Shuttle
flights or will occur on future Shuttle flights.

Description of random processes. The most complete description
possible for a random process is given in terms of its distribution or
density functions. Consider the event {X(tg) < zg} that the random
process X (t) (dependence on the outcome ¢ is understood) takes a value
less than or equal to some chosen number zg at time ty. Imagine that
the experiment £ is repeated many times. Each time the experiment is
conducted, any one of the possible outcomes ¢ and, thus, any one of the
time histories making up the ensemble representing the random process
X(t) could occur. However, on any given trial, one could examine the
resulting time history to see whether its value at time tg was less than or
equal to zg. If the experiment is repeated N times, then one could form
the ratio Vg /N of the number of times Ng that the event occurred to
the number of times /V that the experiment was repeated. This ratio
will be between zero and one. The probability of the event may then be
defined as the limit of this ratio as the number of repetitions approaches
infinity, that is,

IVE

P{X(t) <z} = \}21100 —V_
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Chapter III Random Process Theory

assuming the limit to exist. Although some mathematicians are
not totally comfortable with this intuitive definition,® it is the ulti-
mate relationship between the theory and the real world.® In words,
P{X(tg) < zo} is the likelihood of occurrence of a sample function
whose value is less than or equal to zg at time ¢p.

The value of P{X(tg) < zo} generally depends on tg and zg. Thus,
one may expand the concept by dropping the subscripts and thinking
of z and t as variables to define the first order distribution function of
the random process X(t):

Fx(z;t) = P{X(t) < z}
This function generally depends on both z and ¢ and always satisfies

0< Fx(z;t) €1

An exactly equivalent, but mathematically more convenient, descrip-
tion is given by the first order density function of the random process
X(t):

fx(z;t) = w (3.1)

The density function satisfies
[o o]

| rxt@tdz=1
)

and
fx(z;t) 20

since the distribution function is a monotonically nondecreasing func-
tion of z for each t.

For many applications, the amount of information contained in
the distribution or density function is more than is feasible, or even
desirable, to know about the random process. In these cases, it is
possible to introduce certain averages, or expected values, over the whole
ensemble of functions comprising the random process. Suppose that
g[X(t)] is any function of the values taken by the random process at
time ¢, such as sin X(¢) or X3(t). Then one may define the expected
value of g[X(¢t)] by

0
Blolx@l = [ o) fx(zit)dz

—00
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Introduction to Time Series Analysws

where E is called the expectation operator. Thus, the operation of

taking expectation merely amounts to multiplying the function by the

density function for the random process at time ¢ and integrating over

all possible values of z. It is equivalent to averaging the values of the

function at time t obtained by conducting the experiment repeatedly.
The most useful of these expected values are

Mean o
mx(®) = E(X®) = [ aix(@t)dz (3.2)

-=Q0

which is the average value taken by the random process at time ¢.

Mean square

B = [ Prx(nda (3.3)

-00

which is often called the “power” in the random process X(¢).

Variance
o (t) = E{[X(t) - mx(t)]*} = /_ :(z -mx(t)fx(z:t)dz (3.4)

which is a measure of the variation of the random process about its mean
at time t. The square root of the variance, ox(t), is called the standard
dewiation. Note that the expectation operation, which is an integration,
is linear. Thus, the expected value of a sum is the sum of the expected
values. Further, the expected value of a constant or deterministic
function is equal to that constant or deterministic function. Therefore.

o%(t) = B{[X(t) - mx(t)]®} = E{X?(t) - 2mx()X(t) + m%(t)}
= E{X%(t)} — 2mx(t)E{X(t)} + m%(t)
= E{X?(t)} - m¥k(t)

This expression indicates the fundamental relationship between the
mean, mean square, and variance and provides a useful alternative way
of calculating the variance.

In the same spirit in which the first order distribution function was
developed, one may define the second order distribution function of the
random process X(¢):

Fx(zy,z2;t1,t2) = P{X(t)) S z; N X(t2) < 22}

18
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Chapter III Random Process Theory

Here N indicates the set operation of intersection and may be read as
“and.” Thus, the second order distribution is the probability that the
random process is less than or equal to z| at time ¢; and less than or
equal to I at time t9. Again, it can be interpreted as the likelihood of
occurrence of a sample function having these properties.

Likewise, the second order density function

32 Fx(z1,z2;t1, t2)
0z O0z4

fx(z1,z2;t1,t2) =

and an expected value that depends on the values taken by the random
process at two times

E{g[X(t1). X(t2)]} = f_c:o dr) /—o; dz2 g(z1, 22) fx (21, T2: t1, t2)

may be defined. Here ¢g[X(t;), X(¢2)] is again any arbitrary function
such as exp[X(t1) + X(t2)]. The most useful second order expected
values are

Autocorrelation

Rx(ty,t2) = E{X(t1)X(t2)} =/ dn/ drarizafx(z1,z2it1,t2)

(3.5)
which is a measure of the linear relation between the values taken by
the random process at times ¢; and to. Note that Ry (t,t) = E{X?2(t)}).

Covariance

Cx(t1,t2) = E{[X(t1) = mx(t1)][X(t2) = mx(t2)]}
= Rx(t1,t2) = mx(t1)mx(t2)

Note that T'x(t,t) = 0%(t) and that if mx(t) = 0, Tx(t1,t2) =
Rx(t1,t2).

Correlation coefficient

rX(tly t2)

px(tnta) = o Yox(t2)

which can be shown to satisfy |px(t),t2)| < 1.

19

LLLE koo oo

M U U 4 ¥ Kb L K KLU LK W UM



Introduction to Time Series Analysis

The concept of a distribution function may be further generalized
by defining the nth order probability distribution function

FX(zla 2, ..., Ip;tly, t2, ..., tn)
= P{X(tl) SziNX(tg) Sz2N---NX(ty) < J-'n}

for the random process X(t) for all n and any collection of times
t1,t2,...,tn. In words, the nth order distribution function is the
likelihood of occurrence of a sample function whose value z(t) is less
than z; at time ¢, and less than z7 at time {2 and ... and less than z,
at time ¢,.

An exactly equivalent description is given by the nth order density
Sfunction

fX(zli T2 v ey :ﬂ;tly t2| ey tn)
— anFtY(Il1 321 sy Iﬂ;tla t2s eey tn)
011019 -0zp

and, if g[X(¢1), X(t2), ..., X(tn)] is any function of the values taken
by the process at times t;, ¢2, ..., tn, then the expected value of this
function is defined by

E{g{X(t1), X(t2),..., X(tn)]}

[ o] x [o <]
=/ dzlf dzgf dzn g(z1, 2, ..., Tn)
- -0 -0

Xfx(:rl, Z2, ..., Inity, to, ..., tn)

The description of a random process by its nth order distribution and -
density functions provides the maximum possible information about
the process and will be required by some of the analysis later in this
monograph.

Normal random process. A random process X(t) is said to be normal
if all its density functions are of the form called Gaussian. In particular.

the first is .
a1 _(z -m)
fX(zv t) = \/2—71’0 exp [ TJ (36)

where m = mx(t) and 02 = ag((t), and the second is
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Chapter III Random Process Theory

1 z) — my)?

THPAJNS Sy
[x(@i ity ) 2wa102mexp{ 2(1—"2)[ ot

_ 2p(zy — my)(z2 — m2) + (z2 = m2)2] } (3.7)

g102 d%

where m; = mx(t1), mg = mx(t2), 03 = 0%(t1), 03 = o%(t2), and
p = px(t1,t2). Note that if p =0,

fx(z1,z2:t1,t2) = fx(z1t1) fx(z2:t2) (3.8)

Similar closed form expressions exist for the density functions of higher
orders. Normal random processes are useful because they seem to
describe many phenomena that occur in the real world. Further, many
of their mathematical properties are quite simple. For example, any
linear operation operating on a normal random process yields another
normal random process.

Calculus of random processes. A calculus of random processes,
called mean square calculus, has been developed based on a concept
called mean square convergence. This calculus is a fascinating studg
in itself and the interested reader is referred to the text by Papoulis.
However, for most purposes, it is sufficient to know that all the ordinary
operations of calculus, such as differentiation and integration, may be
applied to random processes with certain mild restrictions. Only the
concept of a limit must be interpreted differently. For exampie, a
random process X(t) is differentiable at t = tg if its autocorrelation
has a second partial derivative where t; = ty = tg. Likewise, a
random process X(t) is integrable over the interval I = (¢y,t7) if its
autocorrelation is integrable over the area I x [.

Consider a random process Y (t) given by the integral of a random
process X(t) with respect to some kernel function K(¢; ), that is,

b(t)
Y(t) = K(t;r)X(r)dr
a(t)

where the limits a and b are arbitrary, but deterministic. Then, the
expected value of Y (t) is given by

b(t)
E{Y(t)} = / ., KIEDECX()ar
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Introduction to Time Series Analysis

since the expectation operator, being linear, may be interchanged with
integration. This fundamental resuit will be used repeatedly throughout
the monograph.

3.2 Random Variables

Anyone who has read this far in this monograph is undoubtably
familiar with the concept of a random variable, which varies over a
set of numbers which are each assigned to one outcome of a random
experiment. For example, the number of dots on the upturned face
when a die is rolled is a random variable. There is also an intimate
connection between random processes and random variables. Recall
that a random process was defined as an ensemble of time functions.
one of which was assigned to each outcome of the random experiment.
If the time parameter in a random process X(t) is considered fixed, at
t = tg say, then X(¢g) is just a number associated with each outcome
and is therefore a random variable. Thus, random variables may be
described in the same manner as random processes, having distribution
and density functions and expected values.

The normal random variable. A normal random variable .X is
described by the density function given by equation (3.6) with

E{X}=m E{{X-m)?}} =d°

Two normal random variables X, and X7 defined on the same exper-
iment £ would have the joint density function given by equation (3.7)
with

E{Xi}=m  E{(X1-m)?} =of

E{Xz}=my  E{(Xz-mg)?} =0}
and

E{(X; = m)(Xz — m2)}
g102

p=

If p =0, then the joint density factors as shown in equation (3.8), and
the random variables X; and X7 are said to be independent.

The chi-square random variable. An important random variable in
understanding the variability of spectral estimation techniques is the
chi-square random variable. Suppose that ¥; for: =1, 2, .... k are
independent, normally distributed random variables with zero means
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Chapter III Random Process Theory

and unit variances, that is m; = 0 and 0,2 = 1. Then the random
variable

k
S=Y2+YE+.. . +YZ=) Y} (3.9)

=1
is called a chi-square random variable with k degrees of freedom.
In other words, the number of degrees of freedom is the number of

independent random variables whose squares are added. The mean
value of S is

k
E{S}=3 E{¥}=k
=1

and its mean square value is

k k k
E{s%) =Y E{V}+)_ Y E(YAIE{Y]}
i=1 =] =1
1#]
=3k+k*-k=2k+k?
since for a normal random variable,
E{Y}} =3E}{Y})
Thus, the variance of the chi-square random variable is

0% = E{S%} - E*{S} = 2%

Note that this random variable has the property that

d—s=ﬁ—o —
E(S] % 0 as k—o©

which shows that the variability of this random variable relative to its
mean becomes less important as the number of degrees of freedom is
increased. The probability density function of the chi-square random
variable is given by

e L k21 a2
fs(sik) = 2"/2l"(k/2)s e (s>0) (3.10)

where [ is the gamma function. From this density, plots of the variation
of the chi-square random variable about its mean at various numbers
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Introduction to Time Sertes Analys;'s

of degrees of freedom may be produced. Such a graph is included in
chapter VIIL

3.3 Jointly Distributed Random Processes

The concepts used in describing a random process may be extended
to two random processes defined on the same experiment. For example.
consider the experiment of measuring noise transmission through the
fuselage of an aircraft. One random process might be the acoustic
pressure measured by a microphone placed outside the fuselage near
the engine while the other might be the acoustic pressure measured by
a microphone inside the fuselage near the pilot’s seat.

Description. Consider the two random processes X(t) and Y'(¢).
The joint distribution function of the two random processes is defined
as

FXY(11’321 ceer Ty Y1, Y20 ooy Ymi by B2, .., tn+m)
=P{X(t1) Sz1NX(tz) Sz20 - - NX(tn) S 2n
ny(‘n-ﬁ-l) Snn Y(tn+2) <Y2n---n Y(tn+m) < ym}

where there is no importance to the order of the times ¢1, ¢2, ..., them.
The joint density function is then given by

Ixy(zi, 22, --.0 Zn, Y1, Y20 oo, Ymi B, 82, e, tnem)
- an+mFxY(zly Z2y -o1 Ty Y1, Y25 . -4 Ym; tly t?n ses e tn+m)

071829 ...9zn Oy1 Oy2...0ym

Joint expected values may also be defined in a similar manner. The
most useful one is

Cross correlation

Ryy(t1,t2) = E{X(t1)Y (t2)} (3.11)

Note that, by convention, the first time goes with the first subscript
variable. Thus,

Ry x(t1,t2) = E{Y(t,)X(t2)}
and, in general, Ryy (¢1,¢2) # Ry x(t1,t2).

24
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Chapter III Random Process Theory

Independence. Two random processes X(t) and Y (¢) are said to be
independent if

f.YY(zlv L2, .oy In, Y1, Y2, -+ yﬂh tlr t21 LR} tn+m)
= fx(z1, T2, .-+, Zn; t1, t2, ..., tn)
X fY(ylv Y2, ---y Yms t‘n+ly tﬂ+27 ) tn+m)

that is, if their joint density function factors into a product of their
individual density functions.

Uncorrelated random processes. Two random processes X(t) and
Y (t) are said to be uncorrelated if their cross correlation satisfies

Rxy(t1,t2) = E{X(t1)} E{Y (t2)} = mx(t1)my (t2)

Independent random processes are uncorrelated, since
[e o] o0
BX)Y () = [ do [ dymfxr(autnt)
-0 )

= /;O:o dz:z:fx(.’r;tl)/;: dy yfy(yit2)
= mx(t1)my(t2)

for independent processes. However, the converse is not necessarily
true.

Complex random processes. Random processes that take complex
values also arise from time to time. These are easily handled by writing
the complex-valued random process Z(t) as

Z(t) = X(t) +i Y ()

and considering the real and imaginary parts, X(t) and Y(t), respec-
tively, to be two real-valued random processes defined on the same
experiment. For complex-valued random processes, the autocorrelation
is defined by

Rz(ty,ta) = E{Z(t1)Z"(t2)} (3.12)

where the asterisk indicates the complex conjugate. This makes
Rz(t,t) = E{|Z(t)1*}
which is real and non-negative.
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Introduction to Time Series Analysis
3.4 Stationary Random Processes

A useful subdivision of the class of random processes is based on
behavior in time. Some random processes, such as the velocity compo-
nent measured by a hot-wire anemometer at a point in a turbulent jet
running at constant speed, are reasonably independent of the precise
value of the time. That is, even though the velocity fluctuates quite
rapidly, measurements made at different times are quite similar in their
average properties. Other random processes have average properties
that vary appreciably with time; for example, the load demand on an
electric power generating system depends on whether it is night or day
or winter or summer.

Random processes whose statistical properties do not vary with the
particular value of time are much more amenable to analysis than
those whose statistical properties do. Thus, many more powerful
techniques have been developed for extraction of information from
them. Such processes are said to be stationary and, in fact. most of
the techniques developed in this monograph will be limaited to stationary
random processes.

A random process is said to be strictly stationary if and only if its
nth order density function is independent of the origin of time for all
n. From this requirement, it can be shown that the first order density
is independent of time, that is,

fx(zit) = fx(z)

Thus, all expected values calculated from this density must also be
independent of time, for example,

mx(t) =mx
o%(t) = 0%

That is, the mean and variance of stationary random processes must
be constants. For the second order density, independence of the origin
of time requires that

Ix(z1,z2;t1,t2) = fx(21,22:0,82 = t1) = fx(z1,22;7)

where 7 = ty — t;. That is, the second order density depends only
on the difference of the two times t; and ts. Thus, all expected
values calculated from this density must display the same property.
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Chapter III Random Process Theory

In particular,
Ryx(ty,t2) = Rx(7)
Tx(t1,t2) =T x(r)
px(t1, t2) = px(7)

Thus, the autocorrelation, covariance, and correlation coefficient of
stationary random processes depend only on the time difference r.
It is this property that aids the analysis of such processes, since the
autocorrelation depends on only one independent variable rather than
two.

Weak stationarity. Although the mathematical definition of sta-
tionarity depends on the density functions, for most of the analysis in
this monograph to be valid, only a weaker form of stationarity, based
on the expected values, is required. A random process X(t) is said to
be weakly stationary if

E{X(t)} =mx  E{X(t1)X(t2)} = Rx(r) (3.13)

That is, its mean is constant and its autocorrelation depends only on
the time difference.

Joint weak stationarity. The concept of weak stationarity may be
extended to two random processes defined on the same experiment.
Two random processes X(t) and Y (t) are said to be jointly weakly
stationary if they are each weakly stationary, and

E{X(t1)Y (t2)} = Rxy(r) (3.14)

Properties of the autocorrelation function of a weakly stationary
random process. Suppose that X(t) is a weakly stationary random
process with mean zero. (Since the mean value of a weakly stationary
random process is constant, if one had a weakly stationary random
process Y (t) with mean my, one could merely substract the mean from
the data and define

X(t)=Y(t) - my
which is a weakly stationary random process with mean zero.) Then,
E{X(t1)X(t2)} = Rx(t2 — t1) = Rx(7)
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Introduction to Time Series Analysis

where  is called the lag time, since it is the time by which the second
value of the random process X(t) lags the first. Further, since order is
immaterial in the expectation,

E{X(t2)X(t1)} = Rx(t1 ~ t2) = Rx(-7)

Thus, it follows that
Rx(r) = Rx(-7)

That is, the autocorrelation must be an even function of 7. Further,
Rx(0) = E{X*(t)} 20

which says that the value of the autocorrelation at a lag of zero must
be non-negative. Also,

E{[X(t1) £ X(t2)]*} = 2(Rx(0) £ Rx(r)] 2 0

which implies that
Rx(0) 2 |[Rx ()|

Thus, the absolute value of the autocorrelation at any lag can never be
larger than its value at zero lag. Finally, recall that autocorrelation is
a measure of the linear relationship between X(t) and X(t+ 7). If X(¢)
is a completely random process (i.e., its mean is zero and it contains
no periodic signals), this linear relation weakens as r increases and, in
fact,
lim Rx(r)=0

|r|—o0
With this understanding of the properties of the autocorrelation func-
tion, it is possible to sketch the autocorrelation function for a typical.
completely random process as shown in figure 8. Further if the deriva-
tives exist, it can be seen that

dRx(7)

haishs A N4 =0

dr =0

since the autocorrelation is even, and

d?Rx(r)
£2x4r)

<
dr <0

r=0

since the origin must be a maximum. The properties of the autocorrela-
tion function will be important in understanding its Fourier transform.
the power spectral density, which will be introduced in the next chapter.
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Chapter I[II Random Process Theory

R_(1)
ExX2(t)

-EX2(t)

Figure 8. Autocorrelation of a typical, completely random process
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Chapter IV
Power Spectral Analysis

The technique of power spectral analysis of stationary random
processes was developed about 50 years ago. Power spectral analysis
was first utilized by the electrical engineering community, particularly
in the field of communications”™8; thus, much of the terminology of
the technique comes from electrical engineering. As will be seen, this
terminology sometimes creates confusion. In recent years, advances
in digital computers and hard-wired spectral analyzers have allowed
applications of power spectral analysis to grow exponentially.

There is a fundamental difference between power spectral analysis
and ordinary harmonic analysis. Instead of developing a harmonic
representation of the sample functions of the random process itself,
in power spectral analysis, one develops a harmonic representation of
the autocorrelation of the random process. The autocorrelation is a
well-behaved deterministic function, and from this representation, one
can infer average properties of the random process.

The power spectral density can be defined as the ordinary Fourier
integral transform (eq. (2.3)) of the autocorrelation function of a
stationary random process, that is,

Sx(w) = 2% /_ °:° Ry(r) e~ 7 dr (4.1)

By the inversion relation (eq. (2.2}), the autocorrelation can be recov-
ered as

Ry(r) = /_ Z Sx(w) €97 dw (4.2)

This Fourier transform pair is often called the Wiener-Khinchin rela-
tions because Wiener and Khinchin derived the pair from a harmonic
representation of the random process instead of stating the pair as a
definition as done here.
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Introduction to Time Series Analysis

4.1 Properties of Power Spectral Densities

Certain properties of power spectral densities are readily apparent
from the Wiener-Khinchin relations. For example, from equation (4.2).

Rx(0) = E(X*(0)} = | °; Sx(w) dw (4.3)

It is this relation that gave power spectral density its name. Recall
that if V and I are the voltage across and current through an electrical
element of resistance R, then the power consumed by the element is
I?R = V2/R. In electrical engineering, X(t) is frequently a voltage or
current time history, and thus electrical engineers tend to think of X2(t)
as power. For this reason, they called the mean square value, E{X?(t)},
the “power” in the random process X(t). This is unfortunate. since
the mean square value may have nothing to do with power at all and
may be confusing in other fields, such as acoustics, where power has a
different definition. However, it is too late at this point to change the
terminology.

Returning to equation (4 3), it can be seen that the “power” in
the random process X(t) may be obtained by integrating the power
spectral density over all frequencies. Thus, the “power spectral density”
is the density of power with respect to frequency, or the power per unit
frequency, in the signal. One favorite examination question in this
field is, what are the units of power spectral density? From the above
discussion, it should be clear that the answer is

[Units of X(¢))?
Units of frequency

Units of Sx(w) =

Thus, for example, if X(¢ ) is an acceleration measured in ft/sec?
and frequency is measured in radians per second, the units of Sy(w)
are ft2/sec3. On the other hand, if X(t) is elevation measured in
feet as a function of distance measured in feet, then frequency is
measured in radians per foot and the power spectral density has units
of ft3. Furthermore, if t is a spatial variable, then X(t) is said to
be homogeneous in space (as opposed to stationary in time) and the
frequency variable w is called wave number, or spatial frequency, and
frequently denoted by & or u.
Now, consider equation (4.1). If the exponential is expanded.

1 [ 1 [
Sx(w) = 2—1“/00 Rx(r)coswrdr — 2—71_/ Rx(r)sinwrdr
- -0
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Chapter IV Power Spectral Analysis
However, the autocorrelation Rx(7) is an even function of . Thus, the

second integral, being the integral of an odd function over even limits,
is zero. Therefore

1 [s o]
Sx(w) = I /_oo Rx(r)coswrdr

is real.

Further, coswr is an even function of r and thus Sx(w) may be

written

Sx(w) = % /0 * Ry(r) coswrdr (44)

From equation (4.4), it can also be seen that

Sx(w) = Sx(-w)

That is, the power spectral density is an even function of w.

4.2 Problems in Comparing Power Spectral Densities

The freedom inherent in the definition of a Fourier transform pair,
as mentioned in chapter II, and the fundamental properties of a power
spectral density result in there being no standard definition for power
spectral density. This latitude often leads to problems in comparing
power spectral densities obtained by different groups utilizing different
definitions.

The first ambiguity arises because theoreticians prefer to work in
terms of radian frequency w, defined for both positive and negative
frequencies. However, engineers prefer to use cyclic frequency f, where
w = 2nf, defined only for positive frequencies. The units of f are
cycles per second (hertz). Note that, since the power spectral density
is an even function of w, the mean square value of the process may be
obtained from any of the expressions

E{X%(r)} = f; Sx(w) dw = 2/0°° Sx(w) dw = 4 /0°° Sx(2nf)df

Thus, engineers prefer to define the one-stded power spectral density:

Gx(f) =4xSx(2xf) (f20)

from which the power in the process may be obtained by

E{X}(r)} = /0 ~ Gx(f)df

33

ELLLEULELD oo ot

Y ¥ ¥ U YN Y UL YN LU L U



Introduction to Time Series Analysis

All the modern spectral analyzers compute the function Gx(f).

Second, older analog spectral analyzers use fixed, finite bandwidth
filters. These analyzers do not yield a power spectral density at all. but
an integrated power spectrum, that is,

fa
SP(f*) = /f Gx(Ndf (h<f <fo)
1

which amounts to integrating the power spectral density over some finite
bandwidth ( fy, f2), such as a third octave. An integrating analyzer thus
assigns the total power in a bandwidth to some frequency f* within
the band, chosen by a committee of workers in the field. To compound
matters, many standards for various phenomena are still written in
terms of this kind of data.

Finally, in any Fourier transform pair, such as equations (4.1) and
(4.2), the placement of the factor (27)~! is completely arbitrary. What
such a pair says is that if one starts with an autocorrelation, transforms
it into the frequency domain, and then transforms back to the time
domain, the autocorrelation is reproduced. Thus, rather than the pair
given, no coefficient could be placed in front of the time integral and
(2m)~! in front of the frequency integral, or (27)~1/2 in front of both.
or some other combination. Or, if it were preferable to work in terms
of cycles per second, one could use the transform pair

sx(f = [ Rxtr)em ! ar
Rx(r) = [ sx(p)eI"af

with no coefficient in front of either integral. Which of these definitions
is chosen has absolutely no effect on the reproducibility of the original
function, as long as the definitions are used consistently. However. if
ohe stops halfway through, at the power spectral density, the amplitude
depends on which definition is being employed. The only solution to
this problem when trying to compare power spectral densities is to refer
to the documentation for the software or to the equipment operator’s
manual for the hardware and determine what transform pair is being
employed. Then, conversion factors which will allow comparison can be
developed.

4.3 Interpretation of Power Spectral Densities

A mathematical model that describes most stationary random
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Chapter IV  Power Spectral Analysis

signals observed in real world situations is

k
Y(t) = Ao+ Y Ancos(wnt + 0n) + X(£) (4.5)

n=1

where the Ap's are constants, the wn'sare a set of frequencies which
are not necessarily harmonically related, k may be infinite, the ¢n’s are
independent random phase angles taken to be equally likely to have
any value between zero and 2r (i.e., no knowledge of the phase of the
periodic functions is assumed), and X(t) is an independent completely
random process. That is, most stationary signals can be modeled by a
constant, a collection of periodic functions, and a completely random
signal. For simplicity, Ag may also be interpreted as the amplitude of
a periodic function of zero frequency.
The mean value of the signal Y (¢) is

E{Y(t)} = Ag

and its autocorrelation can be shown to be

2, o A2
Ry(r) = Aj + —= coswnT + Rx(7)
i L3 ) (46)

where Rx(r) is the autocorrelation of the completely random signal
X(t).

Note that if the time history contains periodic functions, the
autocorrelation contains periodic functions of the same frequency. This
might be surprising, as correlation is a squaring operation which ought
to double the frequency (i.e., 2cos?w = (1 + cos2w)). However, this
frequency doubling does not occur. Further, the presence of periodic
functions in the signal can readily be detected. Since rll-néo Rx(r) =0,

3%

k
: — 42
Tll.n;oRy(r)—Ao-#-rgl 5 COSwnT

Thus, if the autocorrelation does not approach zero for large =, the
presence of periodic functions is to be expected.

The power spectral density of the model signal given by equa-
tion (4.5) is obtained by Fourier transforming equation (4.6). From
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Introduction to Time Series Analysis

equation (2.6), it can be shown that

2% j; coswnT e~ WTdr = %[6(u ~ wn) + 6(w + wn)] (4.7)
Thus,
= 4
Sy(w) = AB6(w) + 3 RS(w—wn) + 6(w+un)] + Sx(w) s
n=] .

where Sx(w) is the power spectral density of the completely random
process X(t).

Now since rlixgo Rx(r) = 0, Sx(w) is the Fourier transform of a
transient function and represents a continuum of frequency components
as shown in figure 3. For example, if

Rx(r) = a:"\'e""‘""
then 2
= —‘K a -
Sx(w) T m (49)

where o is real and positive. Note that Sx(0) # 0 even though
E{X(t)} = 0. That is, even if there is no dc component in the signal, the
power spectral density is nonzero at zero frequency. Thus, in general,
the power spectral density of the model stationary signal given by
equation (4.5) appears as shown in figure 9, where again the arrows

- represent the delta functions. This general spectrum consists of a delta
function at zero frequency produced by the mean of the process, delta
functions at the frequencies +w; produced by the periodic components.
and a continuous distribution of power produced by the completely
random part.

4.4 Relation Between the Power Spw Density and the
Fourier Transform of a Random Process

The relationship between the power spectral density, Sy (w), which
is a Fourier transform of the autocorrelation function of X(t), and the
Fourier transform, X{w), of the random process itself is of interest and
importance. Here, the full power of generalized harmonic analysis is
once again called into play since a stationary random process, not being
square integrable, can only be Fourier transformed in the generalized
sense.
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Chapter IV Power Spectral Analysis

SY(m)
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Figure 9. General power spectral density.

A stationary random process X(¢) satisfies equation (2.1). Thus,
X(t) has a generalized Fourier transform given by

X() = o /_ °; X(8) e=tt dt (4.10)

Note that X(w) is a complez-valued random process in frequency. The
autocorrelation of X(w) is given by (see eq. (3.12))

E{X(w)X*(W)} = LI e dt * dtaRx(t2 — t1) —ti{wty —w'ty)
ol —4? oo 1 —oo 24 x\t2 1)€

Introducing the variables ¢ and 7 such that

T=la—-1

yields
1 [o° o,
E{X(w)X*(W")} = _/ dr Rx(r) et (ww')r/2
27 /-0
x i/oo di e—i(u—u')z
27 J_ o
w+uw

=Sx( 3 )6(w—w')

That is, the autocorrelation of X(w) is zero except when w = w’. Thus,
it follows that

Sx(w) = /_ Z E{X(w)X" ()} du’ (4.11)
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Introduction to Time Series Analysis

That is, the power spectral density may also be interpreted as the
integral of the autocorrelation of the Fourier transform of the random
process over all frequencies. Equation (4.11) is closely related to the
expression for the power spectral density utilized in the finite Fourier
transform approach to be discussed in chapter VIL

4.5 Cross Spectral Density

If X(t) and Y(t) are jointly stationary random processes. it is
possible to define the cross spectral density as the Fourier transform
of the cross correlation:

Sxy(w) = -ln-/ Rxy (r)e™™" dr (4.12)

27 J—co

The cross correlation is regained by
o .
Ry(r)= [ Sxy(w)e™” du (4.13)
-00

However, the cross correlation is not in general an even function of 7.
Thus, if the exponential is expanded to obtain

) R i [f®
Sxy(w) = E;/—oo Rxy(r)coswrdr — 2—7r/°°ny(r)sinurdr

the second integral does not necessarily vanish, and the cross spectral
density is, in general, complex, having a real part

o0
Re(Sxy ()] = 5= /_ "~ Rxy(r)coswrdr

which is an even function of w and is called the co-spectrum. and an
imaginary part

x©
Im[Sxy (w)] = —2—11; /.co Ryy(r)sinwrdr

which is an odd function of w and is called the quad-spectrum. For
plotting purposes, the cross spectral density is usually represented in
polar form, that is,

Sxy(w) = ISxy (w)]efxy ()
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Chapter IV Power Spectral Analysis
and its magnitude
ISxy (W) = {Re¥[Sxy ()] + Im?[Sxy (w)]}'/?
and phase

Im(Sxy(w)]

Oxy W) = arctan g Sy (@)]

are plotted as a function of frequency.
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Chapter V
Random Processes in Linear Systems

Consider a linear, shift-invariant system with a random process
input X(t) as shown in figure 10. The linear system might be a bridge
girder subjected to the random loading of automobiles of various weights
and speeds arriving at various times, or it might be a Space Shuttle tile
subjected to random heat loading during reentry. Any system that can
be described by linear equations is linear. Shift invariance implies that
the parameters of the system are independent of time.

5.1 Description of the System

The system in figure 10 is uniquely defined by its impulse response
function h(t), which is the response of the system to an impulsive load
5(t) at t = 0. If the parameter ¢ is actually time, then for all real
systems, h(t) = 0 for ¢t < 0, since there can be no response until the
load is applied. A system for which this is true is said to be causal
For all real systems, the response also tends to die away with time
because of damping and becomes effectively zero for t > T where 7, is
called the response time. Thus, A(¢) is a transient function, as shown
in figure 11.

In terms of the impulse response function, the output of the system
Y (t) is given by the convolution integral

Y(t) = /_: h(a)X(t - a)da (5.1)

This fundamental equation, which describes any linear, shift-
invariant system, is developed in textbooks on linear system theory,? a
knowledge of which is assumed in this monograph. If the input X(t)
and the impulse response function k(t) each have Fourier transforms
by the definition in equation (2.3), then from the time convolution the-
orem (eq. (2.9)), the Fourier transform of the output Y'(t) is given by
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Introduction to Time Series Analysis

Linear

System > v(t)

X(t)———»

Figure 10. Random process input to a linear, shift-invariant system.

h(t)

Figure 11. Impulse response function.

the product of the Fourier transforms of the input and impulse response
functions with a proportionality factor of 2x. In order to remove this 2
factor and thus simplify the resulting expressions, the following defini-
tion of the frequency response function H(w) for the system is emploved
in this monograph:

H{w) = /_ Z h(t) e~ it d (5.2)

The frequency response function also provides a unique description of
the linear, shift-invariant system since the impulse response function
may be recovered by the integral

h(t) = -217; /_ Z H(w) e du (5.3)

Further, with the use of the definition in equation (5.2), the relation
between the Fourier integral transforms X{w) and Y (w) of the input
X(t) and output Y (t), respectively, is the familiar expression

Y(w)=Hw)X(w) (5.4)
by the time convolution theorem (eq. (2.9)).

5.2 Properties of the Output Random Process

Consider the linear system shown in figure 10 and suppose that the
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Chapter V' Random Processes in Linear Systems

input X(t) is a weakly stationary random process in time which began
at t = —oc (or in the real world, at ¢ < =T so that any starting
transients have died away). Then, the output Y (¢t) is also a random
process, which is given by the convolution integral in equation (5.1).
The question of interest is then, what are the characteristics of the
output random process Y(t)?

The mean value of Y (t) is given by

E{Y(t)} = /:o h(a)E{X(t - o)} da

= myx /:o h(a) da = mx H(0)

where expectation has been interchanged with integration and H(0) is
the frequency response function of the system at zero frequency, or the
“dc gain” of the system. Thus, the mean value of Y (t) is constant.
Further, its autocorrelation is

Ry(t1,t2) = E{Y(t1)Y (t2)}

= f day f dag (a1 Jh(aa) E {X(t) - a1)X(tz - a2)}

L. -] - -]
- f day / dag h(a1)h(ag) Rx (7 = a3 + a1)
-0 ~o0

= Ry (r) (5.5)

which depends only on the time difference r. The output Y (t) is
therefore also a weakly stationary random process, since its mean is
constant and its autocorrelation depends only on the time difference.

Likewise, the cross correlation of X(t) and Y (t) depends only on the
time difference:

Ry (t,t2) = E(X(0)Y (1)} = [ h(a)Rx(r - a)da = Rxy (7)

(5.6)
Thus, X(¢t) and Y (t) are jointly weakly stationary.

Since Y (¢) is stationary, its power spectral density is defined. By
using equation (5.5) and interchanging the order of integration, it can
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Introduction to Time Series Analysis

be seen that
L[
= — —twrd
Sy (w) I /;co Ry(r)e T
L [ oo o
dfe—"‘"/ 401/ dag h(ay)h(ag)Rx(r—az+ay)
o -0

LI S

o0 _ oo
= / day h(ay) etwet / dag h(ag) e~ W2
—-o0 -0

1 Q0
x —/ dr Rx(r—ag+al)e"“("°7+°l)
2x
-00
= H*(w)H(w)Sx(w)

Thus,

Sy (w) = |H(w)|2Sx(w) (5.7)

which says that the power spectral density of the output signal is just
the square of the magnitude of the frequency response function times
the input power spectral density. This simple relation, which is vaiid
for any linear, shift-invariant system, is the fundamental reason for
development of power spectral analysis in terms of sines and cosines.
Although other complete sets of orthogonal functions could be used.
equivalent relations corresponding to equation (5.7) would not exhibit
such simplicity. It might be mentioned that equation (5.7) can also be
derived from equation (4.11) with the use of equation (5.4).

Since X (t) and Y (t) are jointly weakly stationary, the cross spectral
density is also defined. Using equation (5.6) and the same approach
yields

Sxv() = 3= [ Rxy()em™mdr = H@)Sx()  (59)

That is, the cross spectral density is just the frequency response function
times the input power spectral density. Note that equations (5.7) and
(5.8) imply that

Sy(w) = H™(w)Sxy (w) (5.9)

These simple relations are very useful in understanding the response of
linear systems to random inputs.

For example, suppose that the system is an ideal band-pass filter
with frequency response function as shown in figure 12. Thus,

=11 < jw| < w)
H(w)= {0 o (OtTleeri:z)

r--\'v'v~~-v--,'v'v-
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Chapter V. Random Processes in Linear Systems
H(w)
1

. wW
"Wy -W, @, @y

Figure 12. Ideal band-pass filter.

and all frequency components in the range (w;, wg) are passed without
amplification while all others are excluded. For this system, the
relation between the input and output spectral densities is given by
equation (5.7). Thus,

E(v¥w) = [ i Sy(wdw= [ |Hw)Sx(w)dw

-00

=2 [ Sy(w)dw0 (5.10)

wi

and the total power in the output process can be seen to be just the
power in the input process in the frequency band (w;, w2). Since
equation (5.10) must be valid regardless of the values of w; and wo,
another property of the power spectral density ig apparent.

Sx(w) 20 (5.11)

If this were not true, the output power could be negative in some band.

It should be mentioned that the technique for spectral estimation
employed in the old analog spectral analyzers, which passed the signal
through a bank of fixed bandwidth filters, was based on equation (5.10).
Although an ideal band-pass filter for a time signal is not physically
realizable since its impulse response function

2 WiHtwy . wo-—
— COS ! 2tsm 2 wlt
mt 2 2

h(t) =

is not causal, very good approximations to an ideal band-pass filter can
be constructed.

5.3 Determination of Frequency Response Functions

Equations (5.7) and (5.8) can be used to determine the frequency
response function of a linear system in a simple manner. A frequency
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sx(w)

So

W

Figure 13. Power spectral density of white noise.
response function is generally complex, that is,
H(w) = [H(w)|e*)

producing both an amplitude and a phase change in the incoming
signal. To determine this function, a random process can be input
to the system and the input and output spectral densities measured.
Then, if only the magnitude of the frequency response function is of
interest, equation (5.7) yields

1/2
|H(w)| = [g}-’;—%] (5.12)

as long as Sx(w) # 0. To avoid this and to simplify the calculation,
the concept of white noise, whose power spectral density is a constant
as shown in figure 13, is often employed in theoretical analysis. Unfor-
tunately, such noise is not physically realizable since its total power.

2 o0
E{X2(t)} =/ So dw
-0
is infinite. However, band-limited white noise such that

={% (|l <ws)
Sx(w)= {00 (()I:Jherwisi)

can be generated. One is usually interested in the frequency response
function only in some range of frequencies. Thus, if wg is larger than
the values of w in which one is interested, this band-limited white noise
can conveniently be used experimentally to determine the frequency
response function, since the denominator in equation (5.12) will never
be zero in the frequency range of interest. "

If knowledge of the phase of the frequency response function is
also of importance, then the cross spectral density of the input and
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Linear
X —— gyatem —?—Y(t)
N(t)

Figure 14. A linear system with noise.

output processes can be measured and the frequency response function
determined from equation (5.8), that is,

_ Sxy(w)
Hw) = 3T (5.13)

These techniques, which can usually determine a frequency response
function from a small amount of data, have all but replaced the old
time-consuming “sine sweep” method in which the response to each
individual frequency input was measured.

5.4 The Coherence Function

In recent years, the coherence function

2 ISxy ()2
W) = m—————— 5.14
W= Sxwisy@ 519
has come into use. This function has very interesting and useful

properties.
Suppose first that Y'(¢) is obtained by passing X(¢) through some
linear system. Then from equations (5.7) and (5.8),

|H (@) [28% (w)
Sx (W) H(w)2Sx(w)

That is, if X(t) and Y (t) are related by equation (5.1), the coherence
function is unity.

However, suppose now that the output Y (¢) contains an additive
part which is not linearly reiated to X(t), as shown in figure 14. The
“noise” signal N(t) could be due to nonlinearities in the system and
thus depend nonlinearly on the input signal X(t). Or it could be due
to other inputs, or contaminating signals. In either case, the noise is
assumed to be weakly stationary and uncorrelated with the input X(¢).
The output Y (¢) is then also weakly stationary and can be written

=1

Y (w) =
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Y(t) = /_: h(a) X (¢t - a) da + N(t)

Assuming that the mean of Y (t), if any, is removed is equivalent to
assuming that E{N(t)} =0 and Rxn(r) = 0. Thus,

Sy (w) = |H(w)|*Sx(w) + Sn(w) (5.15)

where Syy(w) is the power spectral density of the noise signal. Since.X(t)
and N(t) are uncorrelated, from equation (5.6), the cross spectral
density

Sxy(w) = H(w)Sx(w)

is unchanged. Thus, the coherence is

|H(w)|25% ()
|H (w)[28% (w) + Sx(w)Sn (w)

= - <1 (5.16)

- Sy (w
L+ i

That is, at those frequencies where the noise spectral density Sy (w) is
nonzero, the coherence function is less than unity. Thus, a coherence
value less than one indicates that the input and output processes are
not totally linearly related.

A further interpretation of the coherence function may be obtained
by writing equation (5.15) as

Y w) =

Sy(w) = SyL(w) + Sn(w)

where
Syi(w) = |H(w)?Sx(w)

is that portion of the power spectral density of Y (¢) which is linearly
related to the input X(¢). Then equation (5.16) becomes

|H(@)?Sx(w) _ Syr(w)

Plw) = SR oX) o Sy

Sy (w) Sy (w)
and the linearly related portion of Y(t) may be determined by the

relation '
SyL(w) = v} (w)Sy (w)

from the measured power spectral density Sy (w).
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If there is no linear relation between X(t) and Y(t), such that
Rxy(r) = 0, then Sxy(w) = 0 and 42(w) = 0. Thus, the coherence
function is useful in determining whether a linear relation exists between
the input and output at any given frequency. It should be emphasized
that the absence of a linear relation does not necessarily imply that
there is no relation between X(t) and Y (¢).

The coherence function may be used in many ways. For example,
suppose that a new composite material is developed and one wishes to
determine whether it can be characterized as a linear system. The
material could be excited at one point by a random signal and its
response measured at another point. The coherence between the
two signals would then indicate whether the material is linear in its
behavior. Another use is to determine whether two time histories, which
may have similar power spectral densities, are linearly dependent. For
example, many people believe that sunspot activity produces effects
observable here on Earth, such as climatic changes evidenced by crop
yields. Data on the activity of sunspots going back to the year 1610
exist!? and their power spectral density exhibits a peak corresponding
to a period of approximately 11 years. If one had data on some
other phenomenon, such as wheat yields in Iowa, whose power spectral
density also exhibited a peak showing an 11 year cycle, then one might
suspect a linear relationship between the wheat yields and the sunspot
activity. However, the similarity of the spectra might also be merely a
coincidence. Coherence analysis of the two records over the same span
of years would resolve the question. In one such test of which the author
is familiar, coherence analysis showed no linear relation at the 11 year
cycle, but did suggest a linear relation with a period near 80 years.
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Chapter VI
Estimation Theory

This chapter begins examination of the problem of evaluating the
various expressions developed in the previous chapters from data ob-
tained in the real world. Most of these expressions involved ensemble
averages over the entire ensemble of time histories that comprise the
random process. This entire ensemble is never available for analysis
in practical situations. Nor is the probability distribution function of
the random process known. Thus, one must be content to estimate the
quantities of interest, often on the basis of a single realization of the
random process.

6.1 Estimation of a Parameter by a Random Variable

Consider an unknown parameter  which one wishes to estimate
by a random variable #. In this monograph, a hat over a quantity
indicates an estimate. Why would one want to make such an estimate?
Recall that the assumed data comprise a record of length T of a single
sample function from a stationary random process X(t) as shown in
figure 15. On the basis of this single sample function, it is desired
to estimate parameters (i.e., moments) of the random process itself,
such as my, Rx(r), and Sx(w), which for fixed  and w are constants.
However, the estimates will be random variables, since they will depend
on which particular sample function is used.

The first requirement one would ordinarily desire in an estimate is
that R

E{} =19 (6.1)

where the expectation is over all possible values of the estimate (i.e.,
over all possible sample functions that comprise the random process)
in order that the average value of the estimate would be the quantity
to be estimated. An estimate which satisfies this requirement is said to
be unbiased. When this is not true, it is possible to define

Bias = E{0} - 4 (6.2)
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X(t)

AAM 4

VVV v g

Figure 15. Finite length sample function.

Bias is a systematic error due to the estimation technique employed.

The variation of the estimate & about its mean value depends on
which sample function is employed. In order to keep this uncertainty
as small as possible, one should choose the estimate so that it varies
as little as possible about its mean value; that is minimum variance
estimation is desired. This uncertainty is measured by the standard
deviation of the estimate:

Uncertainty = (E{[f# — E(8)}%})V/2 . (6.3)

Thus, one ordinarily attempts to choose an estimation technique that
is without bias and whose uncertainty is as small as possible.

6.2 Estimation of Mean

Suppose that X (¢) is a stationary random process and consider the
estimate :

T
x = % /0 X(t) dt (6.4)

Since my is a number assigned to each outcome of the experiment. it
is a random variable. In addition,

T T
E{x) = 2 /0 E{X(t)}dt = 2X /0 dt = my

and, thus, hx is an unbiased estimate of the unknown mean my of
the random process X(¢). Further the variance of my is
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ta
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Ve / ¢

Figure 16. Region of integration.

T
—l/rr(f) 1= g (6.5)
T X T )

where the integral relation

T T T
/; dtlfo dts Flty — t,) =/_T FO)T - rdr  (6.6)

has been employed. In this equation, F(r) is any function of the variable
T = tg — t;. This fundamental relation (eq. (6.6)) is obtained by
employing the change of variables ¢{) = ¢t and t; = t + r and noting
the region of integration as shown in figure 16. The integral over ¢ may
then be evaluated. Upon use of equation (6.5), the uncertainty in the
estimate in equation (6.4) of the mean is seen to be

. 1 (T M
Uncertainty = T/Tl"x(r) 1- T dr
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Introduction to Time Series Analysis

which can, in theory, be made as small as desired for a completely
random process by obtaining more data (i.e., by letting T — x) since
lim Cx(r) = 0. However, for T fixed, the uncertainty is fixed and
fonzero.

6.3 Estimation of Autocorrelation

Consider the autocorrelation estimate defined by

Ry(r) = T—l_—; OT_T X(O)X(t+7)dt (0<r<T) (6.7

[ts expected value is

1

T-r

. T—r
E{Ryx(r)} = fo Ry () dt = Rx(r)

and thus, Rx(7) is an unbiased estimate of Ry(r) for 0 < r < T.
Several points should be noted about this estimate:

1. The estimate can be determined only out to a lag of r = T from a
data record of length T.

2. Equation (6.7) also provides an estimate for -7 < 7 < 0 since the
autocorrelation function is even.

3. Less data contribute to the estimate as r increases, as can be seen
from the limits of integration. Thus one would expect the variance
of the estimate to increase with 7. In other words, the estimate of
Rx(7) becomes more uncertain as r becomes larger.

An equation for the variance of Rx(r) involves the expected value
of the product of the values taken by the process at four different times
and will not be included in this monograph. However, the variance
can be shown to depend upon both T and 7 and to approach zero as
T — oo. Thus, the uncertainty in this estimate can again be made as
small as desired by obtaining more data.

6.4 Estimation of Cross Correlation

In a similar manner, the expressions

1

-7

. T-r
Rxy(r)= = /0 X@OY(t+r)dt (0<r<T) (68)

and

1
T-r

. T-r
Ry x(r) = /o Y(O)X(t+r)dt (0<r<T) (6.9
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X(t)

M VAVM "’TBM A /o
T

T- NBTB

Figure 17. Data broken into blocks.

can be shown to be unbiased estimates of the cross correlations of two
jointly weakly stationary random processes. Again, their variances
depend on both T and r and approach zero as T — oo. Note that
the cross correlations are not generally even functions of 7. However,
the values for negative lags can be obtained from the relations

Rxy(-7) = Ryx(7)
Ry x(-7) = Rxy(7)
6.5 A Test for Stationarity

Because the assumption of stationarity is fundamental to most of the
analysis in this monograph, it is important to derive a test to ascertain
whether it is reasonable to assume that a particular time history is a
sample function from a stationary random process. Fortunately, such
a test is readily developed.

Consider a sample function of length T from a random process X(t)
and suppose that it is broken into Npg blocks of data of length Tg, as
shown in figure 17. Then, an estimate of the mean

1 [Te
iy = o / X(t) dt
Tg Jo

and an estimate of the variance
=4 / [X(8) — ]2 dt (6.10)

can be calculated for each block of data. A test for stationarity is
then developed by recalling that the mean and variance of a sta.ionary
random process are constants. Thus, the estimates of the mean
obtained from the different blocks of data should be equal, except for
random variability. In addition, the estimates of the variance obtained
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from the different blocks of data should aiso be equal. If one wants to
be sophisticated, there are various statistical tests which will allow one
to accept or reject, with a certain level of confidence. the hypotheses
that these estimates are all from an underlying random process with
constant mean and variance. However, for practical purposes. if these
estimates vary more than a few percent for “reasonably sized” blocks
of data, one should be cautious in placing much faith in analyses based
on stationarity. Here, “reasonable size” is a judgment, based on the
frequency content of the data.

It might be mentioned that the estimate of the variance (eq. (6.10))
is an example of a biased estimate. Its mean can be shown to be

£{6%} = ok - E{(mx - mx)?}

where the variance of the estimate of the mean is given by equa-
tion (6.5). Thus, the mean value of the estimate of the variance is
less than the actual variance. However, this bias does not affect the
test for stationarity since all the variance estimates will be biased by
the same amount if the process is stationary.
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Chapter VII
Estimation of Power Spectral Densities

There are two techniques in common use today for estimation of
power spectral densities: the Blackman-Tukey and finite Fourier trans-
form techniques. There are also newer techniques, such as maximum
entropy and maximum likelihood, which, though still subjects for re-
search, appear to have certain advantages over the older techniques and
may one day become standard. These newer techniques are discussed
in chapter XII.

7.1 The Blackman-Tukey Approach

The first practical approach to the estimation of power spectral den-
sities was developed by Blackman and Tukey.! Although this approach
has been superseded as the standard by the finite Fourier transform
approach, it is still valuable for certain applications, particularly when
one is analyzing digital data and the number of data points is not a
power of two. Further, it illustrates some of the difficulties in spectral
estimation more clearly than does the finite Fourier transform. Thus,
it will be discussed first.

Recall that the power spectral density is defined as the Fourier
transform of the autocorrelation function, that is,

Sx(w) =4 [ Ry(r)e=7d
x(w)—% . x(r)e T

From equation (6.7), an estimate of the autocorrelation for |7| < T can
be obtained as shown in figure 18. Thus, Blackman and Tukey define
their estimate as the finite Fourier transform of this function, that is,

] T .
Sxlw) = 2%/4 Ry(r) e~ dr (7.1)
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Ry(T)
$ + T
-T T

Figure 18. Estimate of autocorrelation.

uT(T)
1

-T T
Figure 19. The boxcar function.

In effect, the Blackman-Tukey approach assumes that Ry (r) = 0 for
|7} > T. The first question, of course, is how good is this estimate?

Introduce the bozcar function

=1 (r<7)
ur(r) = {0 (Otherwise)

as shown in figure 19. With the use of this function, the estimate in
equation (7.1) may be written as

~ oo a 3
Sx(w) = 2%/ up(t)Rx(r) e "  dr (7.2)
-0
with expectation
. 1 [ .
E {Sx(u)} = 2—1r/_°° ur(r)Rx(r) e ™" dr (7.3)

since Rx(r) is an unbiased estimate of Rx(r) for |rf| < T. Now.
equation (7.3) is the Fourier integral transform of the product of two
functions. Thus it may be evaluated by the convolution theorem
(eq. (2.8)). That is, since the Fourier transform of the autocorrelation
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Chapter VII Estimation of Power Spectral Densities

Figure 20. The spectral window Ur{w).

is the power spectral density,
R oo
E{5xw) = f Up(w—u')Sx (W) du’ (7.4)
-QC

where Ur(w), called a spectral window, is the Fourier transform of the
boxcar function and is given by

1 o -twT T
Up{w) = — ur(r)e dr = — sinc(wT) (7.5)
27 /-0 T
where .
sincz = === (7.6)
z
is the sinc function, which has the property that lin}] (sincz) = 1.
T =

Although some authors include a 7 in the definition of the sinc function,
equation (7.6) is preferable for time series analysis. The spectral
window Up(w) is shown in figure 20. Its main lobe has height T /=
and width 27/T, and its integral is unity since by definition

up(r) = /_ °; Up(w) €7 dw

and thus oo
ur(0)=1= / Ur(w) dw
-00

Therefore, as T — o0, the spectral window has the characteristics of a
delta function. in which case the integral given in equation (7.4) would
be Sy (w) and the estimate would be unbiased.

However, for finite T, the spectral window Ur(w) is not a delta
function; it has a main lobe of finite width and both positive and
negative side lobes. Thus Sx(w) is not an unbiased estimate of the
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Introduction to Time Series Analysis

power spectral density Sx(w). It can be seen from equation (7.4)
to be biased because its expectation is a convolution of the actual
power spectral density with the spectral window Up(w). Further. the
finite width of this window causes a major problem with the frequency
resolution of the power spectral density, as will be discussed later in
this chapter. There are also other unfortunate aspects to this estimation
technique, such as the negative estimates that can be produced at times
by the side lobes of the window and the high variability of the estimate,
as will be discussed in chapter VIII.

It should be noted, however, that even though this estimate is biased.
it is still power preserving in the sense that, from equation (7.3),

/_: E{Sx(w)} du = /_Z dr up(r) Ry (7) 2% /_Z e g
= /_o:o drup(r)Rx(7)6(7)
= ur(0)Rx(0) = £ {X?(t)}

since u(0) = 1. Thus, the mean value of the integral of the spectral
estimate is the same as the integral of the actual power spectral density.
the total power of the process.

7.2 Windows

In an attempt to improve their estimation technique, Blackman and
Tukey developed a new class of estimates

u(r)Rx(r) e™™" dr (1.7)

1 o0

Sx(w)

=E oo

where u(7) is a real function called the lag wtndow corresponding to the
spectral window

l o0 .
Uw) = 5 /_ un)eTdr (7.8)

Since equations (7.7) and (7.2) are identical in form, these new esti-
mates have similar mathematical properties to those discussed earlier.
Blackman and Tukey’s idea was to pick a lag window that led to a spec-
tral window which has smaller side lobes or other desirable properties
and which reduces the variability of the estimate.
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u(T)
1
$ ¢ T
“Tm Tm

Figure 21. Arbitrary lag window.

All acceptable lag windows must satisfy three requirements:

1. u{0) =1, to preserve power

2. u(r) = u(—7) so that Sx(w) is real

3. u(r) =0 for |r| > T;p where ), < T, so that unavailable data are
not required

Thus, all lag windows have a shape similar to that shown in figure 21.
Since any function that satisfies these three requirements is an even
function for =Tm < 7 < Ty, it can be expanded in a Fourier cosine
series in that region:

u(r) = ? + z n COS =t = T (7l < Tw) (7.9)

n=l m

where
[ )
ao
=7t
n=1

Thus, equation (7.9) represents the whole family of windows for different
choices of the coefficients an. The corresponding spectral window is
given by

1 * -twT
U(u) = g oo u(r) € dr
Tm — .
=5 _E_oo ap, sinc(wTmy — n) (7.10)

Thus, the arbitrary spectral window consists of a sum of sinc functions
occurring at the frequencies w = nw/Ty, as shown in figure 22.
Generally, the number of nonzero an’'s determines the effective width
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Y (w)

asz
2n

~Sm -2n -
Tm Tm Tm

Figure 22. Arbitrary spectral window.

of the main lobe of the window. However, the positive lobes of one sinc
function tend to cancel the negative lobes of another.

Some classical windows. Some lag windows have been so widely
used that they are worthy of discussion:
1. Boxcar (ag = 2, an =0 for |n| > 0):

1 (11<Tm
u(r) = {0 (Otherwiseg

This window, which was the original Blackman-Tukey window, is shown
in figure 19 and its corresponding spectral window is displaved in
figure 20.

2. Hanning (ag =1, a; = 1/2, an =0 for |n| > 1):

= [3(1+cos FZ) (|| < Tm)
u(r) = {0 Tm (Otherwise)

This window was named for the Austrian meteorologist Julius von
Hann! and is probably the most widely used window for Blackman-
Tukey spectral estimation.

3. Hamming (29 = 1.08, a; = 0.46, a, =0 for |n| > 1):

u(r) = {0.54 +046cos f= (|7 < I.'m)
0 (Otherwise)
This window was named for R. W. Hamming.! Although it minimizes ‘
the height of the side lobes for a two-term series, it has a discontinuity i
at |7} = T, which is not present in the Hanning window. However.
note that the Hamming and Hanning windows differ negligibly.
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4. Cosine bell:

_ [eoszt= (|| < Tm)
ur) = {0 (Otherwise)

Although this window corresponds to a complicated set of an’s, its
transform can be written

Ulw) = Tm coswTm
T2 (w2/4 - WlTR)
Figure 23 presents a comparison of the cosine bell and Hanning lag
windows and figure 24 presents a comparison of the corresponding
spectral windows.
5. Bartlett:
u(r) = {é- fr (rl<Tw)

(Otherwise)

This window was named for M. S. Bartlett.!! Again it corresponds to
a complicated set of a,’s. However, its transform may be written

U(w) = -Iz::—sinc2 (%)

since it is produced by the convolution of two boxcar windows. As
can be seen, the Bartlett spectral window has no negative side lobes.
However, its main lobe is very broad.

Cross spectral densities. With the Blackman-Tukey approach,
similar estimates of the cross spectral densities may be developed. For
example, from equations (6.8) and (6.9), the cross correlation Rxy (7)
may be estimated for |r| < T. Then

Ser@) =5 [ unkeynerar

yields an estimate of the cross power spectral density.

7.3 The Finite Fourier Transform Approach

The technique for power spectral density estimation in most common
use today is based on the Finite Fourier Transform of the data rather
than on the transform of the autocorrelation function. Historically,
this technique was developed first and produced what was called the
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Chapter VII Estimation of Power Spectral Densities

periodogram.!! However, it was only with the introduction of the Fast
Fourier Transform (to be discussed in chapter X) that the technique
became practical for large amounts of data.

From a single sample function of length T of a random process
X(t), it is clear that the Fourier integral transform of X(¢) cannot be
computed because the data are not known for infinite time. However,
the finite Fourier transform

Xr(w) = Elﬂ- /O T X(t) e ™t dt (7.12)

can be calculated. Further

—

E {4Y1‘°(W)XT(U = / dh/ dtg RX to—t, )e"“'('z-‘l)

T wr
=2 [21 /;TRx(f)e dr

1 T
- m;/.-.r |7|Rx(r) e~ dr] (7.13)

-.-1

where equation (6.6) has been employed. Now, if X(t) is a completely
random process, the second integral in equation (7.13) is finite. Thus,
one finds that 0
. s 2\ _
Aim = E{|Xr(@)*} = Sx(w) (7.14)

since the second integral is driven to zero by the T—! multiplier and
the first integral becomes the power spectral density.
Based on this relation, the class of power spectral estimates
Sx(w) = Ws|Xp(w)? (7.15)

may be introduced where
1 [o° -
Xp(w) = — / d(6)X () et dt (7.16)
2 /oo

is a Fourier transform of the data as seen through the window function
d(t). The data window is a real function with the property that d(t) =
for t < 0 and ¢t > T so that unavailable data are not required. The
correction factor Wg is to be determined.
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Introduction to Time Series Analysts

How good is such an estimate? Again, for w fixed, this estimate is
a random variable with mean

N %% o0 [><] ‘ _
E{$xw)} = ﬁ/-—oo dtl-/;oo dty d(t1)d(tz) Rx (t2—t1) e~(F2 1)

1 [ Wg [ |
='2';r',/ _'s'/_md(‘)d(t-f)dt Rx(r)e™™Tdr (7.17)

—o0 27
upon setting t; = ¢t — r and t2 = t. Note that equation (7.17) is
analogous to equation (7.3) with the equivalent lag window

u(r) = % /_ : d(t)d(t—r) dt (7.18)

which is a convolution of the data window with itself. Thus. the finite
Fourier transform and Blackman-Tukey techniques are mathematically
equivalent in their expectations as long as equation (7.18) satisfies the
conditions for a lag window. The first condition, that u{(0) = 1, for
power preservation requires that

u(0) = -2-/:-/_2 d2(t)dt = 1

In other words, the window correction factor must be
We = 2n
N W IOP”

-0

Thus, the estimate in equation (7.15) becomes

2r |2

Sx(w) = [0 (t)dthr(w) (7.19)

-0

The second condition, that u(r) be an even function of r, is identically
satisfied since

w(=r) = % / Z d(e)d(t+7) dt

= % /_O; d(t' —-r)d(t') d¥ = u(r)

upon setting ¢’ = t + r. The third condition, that u(r) = 0 for
|7l > T is also identically satisfied since u(r) is the convolution of
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Chapter VII Estimation of Power Spectral Densities

two data windows that are nonzero only in the range {0,T). Thus,
equation (7.18) does satisfy the conditions for a lag window, and it
can be seen that the finite Fourier transform and Blackman-Tukey
spectral estimation techniques are equivalent in their expectations.
That is, finite Fourier transform estimation unth a data window dft)
corresponds to Blackman-Tukey estimation with the lag window given
by equation (7.18). A converse statement is also valid.

One comforting property of the finite Fourier transform technique
can be seen by introducing the Fourier transform of the data window

D(w) = 2—17; /_ °:° d(t) e~ 1t dt (7.20)

where o
d(t) = D(w) e“tdw

-0
Then, the equivalent spectral window is given by the Fourier transform
of equation (7.18). Note that the convolution theorem (eq. (2.9))
cannot be applied to equation (7.18) directly since the convolution in
equation (7.18) depends on ¢t — r rather than on r — t. However, the
Fourier transform of f(—t) is F(—w). Thus, by equation (2.9), the
equivalent spectral window is

U{w) ! /oo u(r) e~ dr = WgD(w)D(-w)

= E; oo
Further, since d(t) is real, D(—w) = D*(w). Therefore
U(w) = Ws|D(w)|? (7.21)

and it is seen that the equivalent spectral window is always non-
negative. Thus, the finite Fourier transform technique cannot yield
negative spectral estimates.

Any of the lag windows introduced previously may be employed as
data windows by setting

d(t) = u(2t-T) (7.22)
which merely amounts to shifting the range from (-7, T) to (0, T). The
cosine bell window and the boxcar window modified by cosine tapers!
on each end are probably the most widely used windows in finite Fourier

transform estimation.
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Cross spectral density estimation. Again, similar estimates for the
cross spectral densities may be developed. For example,

Sxy(w) = Ws Xp(w)Yr(w) (7.23)
where Yp(w) is given by equation (7.16) with X(t) replaced by Y (¢).
Autocorrelation and cross correlation estimates. If the power spectral

density is estimated by the finite Fourier transform, the autocorrelation
could then be estimated by Fourier transformation, that is,

- =, 2 .
Ry(r) =/_°° Sx(w) €97 d (7.24)

Again, the question is how good is this estimate? Its expected value is

E{kx(n) =/

-0c

o0

E{3x(w)} e du
where, by equation (7.17),
- 1 o0 e .
E{5x(w)} = E/_m u(r) Rxc(r) e~ dr

and u(r) is given by equation (7.18). Thus,

E {Rx(n)} = u(r)Rx(r)

and the estimate in equation (7.24) is seen to be biased. Even if the
boxcar data window is employed,

u(r) = %/_: d(t)d(t—r)dt =1 — ’—;,' (7l < T)

which is a Bartlett lag window, and the estimate is still biased:

||

£{Rx(} = (1- 1) 2x(r)

and in order to make the estimate unbiased, it is necessary to define a
new estimate

- = < .
Ry(r) = Wg / Sxe(w) €7 duw
—co

(7.25)
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where Wpg is the window correction factor

1
Wp=—

R u(r)

Similar estimates may be developed for the cross correlations, for
example,

N [, . .
Ryy(r) = Wh / Sxy (W) €4 dw (7.26)
—00

7.4 Frequency Resolution

The major problem introduced by a finite data record length is
that of frequency resolution. Since the finite Fourier transform and
Blackman-Tukey spectral estimation techniques have an equivalent
bias, this problem occurs in both techniques. Thus, the problem
of frequency resolution will be analyzed for the simplest case of a
Blackman-Tukey estimate with a boxcar lag window.

If a random process X(t} consists only of a single sinusoid with
amplitude A and random phase ¢, that is,

X(t) = Acos(wyt + ¢)

then, its autocorrelation is

2
Rx(r) = %—coswlr
with power spectral density
A2
Sx(w) = vy [f(w—=w1) + 6(w+w)] (7.27)

However, if equation (7.27) is substituted in equation (7.4), the expected
value of the spectral estimate is

X 2
E{3x()} = 5 Wrw-w) + Urlww)]  (1.28)

as shown in figure 25. Thus, the spectral estimate consists of two
reproductions of the spectral window. Further, since the window has
negative side lobes, the estimate is negative at certain frequencies even
though the power spectral density, by definition, must be non-negative!
It is only in the limit as T — oo that non-negative estimates consisting
of two “spikes” at w = *w; are obtained.
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E <§x(m)}

4n

o~ - W

W4 Wy

Figure 25. Spectral estimate of sinusoidal signal.

Now, suppose that the signal consists of two equal-amplitude sinu-
soids at frequencies w; and w», that is,

X(t) = Acos (wit + ¢1) + Acos(wat + 92)

with random phase angles. Then, the expected value of the spectral
estimate is

2
E{3%()} = 5 Wr(w-w1) + Ur(w=uy) + Up(w+wr) + Ur(wrun)]  (1.29)

which is a sum of four window functions, two centered at w; and w9 and
the other two centered at —w; and —u». Depending on the frequency
separation Aw = (wg — wy) and the characteristics of the spectral
window, it may or may not be possible to determine from the estimate
that two separate frequencies are present. In the analysis that follows.
it is sufficient to consider only the window reproductions at the positive
frequencies w; and we. Three cases are possible as shown in figure 26. In
figure 26(a), the two frequencies are 3o close together that the sum of the
two window functions that represent them actually peaks at the mean
frequency @ = (w1 + w2)/2, and no peak is visible at the frequencies
w1 and wp. In figure 26(b), the frequencies are better separated and
peaks at w; and wo are visible, However, the two window functions
merge into one another. Finally, in figure 26(c), the frequencies are
sufficiently separated that the two window functions are distinct.

A criterion can be developed that will determine which of these three
conditions is present for the spectral window given by equation (7.5)
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Chapter VII Estimation of Power Spectral Densities

E <Sx(co)>

el

| S . 4
Wz

(a) Unresolved components.

E <§x(m)>

)

W4 Wa

(b) Partially resolved components.

E <§x(co)>

A@ [\ w
l N V-5 I
@, @a

(¢) Fully resolved components.

Figure 26. Spectral estimate of signal containing two sinusoidal components.

and various separations of the two frequencies. Define the sum of the
two window functions as

f(w) = Up{w=—wy) + Up(w-wq)

(w = @)sin(w = @)T cos (&) T - () cos(w - @)Tsin () T

=§[

L

I U U LK L K

(7.30)
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Introduction to Time Series Analysis

N

Figure 27. Peak amplitude functions.

where Aw = (w2—w1). The value of this function at the mean frequency
@ =(wy +we)/2is

fl@) = g sinc (%) T (7.31)

while its value at the frequencies w; and w9 can be obtained from a
limiting process as

-, Aw T . Aw Aw -
f(u:i:T) == [1+smc (T) T cos (7> T} (7.32)
In terms of these two values, the criterion for resolution may be given
as
Unresolved: f@z2=2f (CJ Qz-)
Partially resolved: foxae)> s
Fully resolved: f(@)=0

Figure 27 is a plot of equations (7.31) and (7.32) as a function of the
separation of the two frequencies Aw. From this figure, it can be seen
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Chapter VII Estimation of Power Spectral Densities

that partial resolution requires

4.2
Aw| > —
Au] > 33
while full resolution requires the two equal-amplitude sinusoids to be
separated in frequency by

27

lAw| = |wz —w1] 2 7 (7.33)

where the first zero of f(&) has been utilized.

This analysis of the resolution problem has assumed that the two
sinusoids were of equal amplitude. Clearly, the problem of resolving
two sinusoids becomes even more difficult if the sinusoids have unequal
amplitudes.

The resolution problem also places a lower limit on the frequencies
that can be observed in a record of length T. Any frequency w lower
than 27/T, or

1
f<7 (7.34)

cannot be differentiated from zero frequency. Thus, frequencies f below
1/T appear as a nonzero mean or linear trend in the data.

Bias. If the signal X(t) is a completely random process, the
preceding discussion of frequency resolution may, on occasion, make
matters look worse than they really are. Recalling the definition of the

boxcar function and the fact that the autocorrelation is even, it can be
seen from equation (7.3) that

E {Sx(w)} = %/:o ur(T)Rx(r) coswrdr
= Sx{w) - %[:o Rx(r)coswrdr
and thus
Biss = E {$x(w) } - Sx(w) = -% [:’ Rx(r)coswrdr  (7.35)

Therefore, the bias depends on the values of the autocorrelation at
lags greater than the record length. If X(t) contains periodic signals
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Introduction to Time Series Analysis

or very low frequency components, these autocorrelation values are
nonzero and the preceding discussion is relevant. However, if X(¢)
is a completely random process, the autocorrelation may well become
essentially zero before the end of the record length, in which case the
estimate is unbiased. It is surprising that this result has received very
little attention in the literature, as the conditions for its validity are
often fulfilled in practice.

When the estimate is biased, a better understanding of the bias can
be obtained by noting that equation (7.4) may also be written

E {éx(u)} = /_ : Up(A)Sx(w — A) dA (7.36)

Because Ur()) is highly peaked about A = 0, most of the value of
the integral comes from this region. The power spectral density may
be expanded in a Taylor series about A = 0, with primes indicating
derivatives with respect to w:

2
Sx(w=2A) = Sx(w) = ASx(w) + '\?s;’{(u) -

and then equation (7.36) can be approximated by integration over only
the main lobe of the window. The result is

x/T

E{5x()} ~ / | UrSx(w=2)dx

-
/T =/

T
~ Sx(w) / LU=k [T ()

- -

” /T
+i¥}“ﬂﬁw/T A2Up(A)dA

~ Sx(w) + X&)

since the first integral is nearly unity (i.e., u7(0) = 1) and the second
integral vanishes because the window is an even function. Thus, another
expression for the bias may be obtained:

Bias = E {Sx(u)} - Sx(w) =~ f&zf,i) : (%.37)
74
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Chapter VII Estimation of Power Spectral Densities

W

Figure 28. Smoothing produced by estimation.
It can be seen that

E {Sx(u)} > Sx(w)  (If S%(w) > 0)
<Sx(w)  (If S%(w) < 0)

That is, the estimate will be too low at maxima of Sx(w) and too high
at minima and will therefore provide a smoothing of the spectral density
as shown in figure 28. This result is to be expected, since the spectral
window acts as a moving-average low-pass filter (to be discussed in
chapter XI) and suggests a method for attempting to reduce the bias
as discussed below.

Prewhitening and postdarkening. One technique that is sometimes
used to try to remove the bias caused by estimation is called prewhiten-
tng and postdarkening. Because the bias is proportional to the second
derivative of the actual power spectral density, the idea is that if the
actual power spectral density were flat or even linear in w, the bias
would be zero.

Suppose that the signal X(t) has a power spectral density with peaks
as shown in figure 29. If one could design a filter that has valleys at
the frequencies at which the spectrum has peaks, as shown in figure 30,
and then pass the signal through the filter, the power spectral density
of the output signal Y (¢}, given by

Sy (w) = |H(w)[*Sx (w)

Py

would be nearly flat as shown in figure 31. Thus, an estimate of the
power spectral density of the random process Y (t) should have little
bias. Such a technique is called prewhitening. An estimate of the
power spectral density of the original signal X(¢) is then obtained by
reversing the process, that is,

: _ Sy(w)
x) = TEGe
75
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Introduction to Time Series Analysis

Sx(co)

+ > W
| ca1 Q)z

Figure 29. Power spectral density containing peaks.

| H(w)|

VTV

- ’ w

@

Figure 30. Prewhitening filter.
Sy(w)

i - w
Figure 31. Prewhitened power spectral density.
This technique is called postdarkening.
To actually implement the technique, one would first obtain a raw
estimate Sy (w), use this to design the filter, and then carry out the

procedure. It could even be done iteratively if necessary. The process
for designing such a filter will be discussed in chapter XI.
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Chapter VIII
Uncertainty in Power Spectral Estimates

The spectral estimates discussed in the previous chapter also vary
about their mean values, depending on which particular sample function
of the random process is employed. This uncertainty can be very large
(as will be seen), and thus means for reducing it must be devised. The
two common techniques for spectral estimation use completely different
approaches to solve this problem.

8.1 Understanding of Uncertainty

An understanding of uncertainty in spectral estimates can be gained
from one case which can be worked out completely, because of the
assumed normality of the random process. Suppose that X(t) is a
stationary, normal random process with mean zero and variance o2 .
Then by analogy to equation (7.14), consider the random variable (for
w fixed)

Z(w) = lim 2| Xr(w)? (8.1)

whose expected value is the power spectral density Sx(w). Now, from
equation (7.12), Z(w) may be written

Z(w) = X}(w) + X3(w) (8.2)
where
1 T
X {w) = Tl_i_x‘noo —\/ﬁ,/; X(t) coswtdt

1 T
Xo(w) = lim /thintdt
2( ) T—co \/2”—1.. 0 ( ) «
Since the operations on the normal random process X(t) represented
by these expressions are linear, X)(w) and X3(w) are normal random
processes, or for w fixed, normal random variables. (See chapter III.)

(8.3)
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Introduction to Time Series Analysis

Further, it can be shown by taking expectations of equations (8.3)
that

E{X)(w)} = E{X2(w)} =0 (8.4a)
and
2 _ 2 _ Sx(w)
E{x}w)}=E{X}w)}= x= (8.4b)

Thus, X(w) and X2(w) are identically distributed. In addition,
E{X)(w)X2(w)} =0

and so they are uncorrelated; that is, for all w, the correlation coefficient
of these two random variables is

p= BT

where 02 = Sx(w)/2. Therefore their joint density function (see
chapter III) factors, that is,

Ix1x3(z1,22) = fx; (z1) fxp(z2)

Thus, X;(w) and X3(w) are independent random variables and Z(w),
as given by equation (8.2), is the sum of squares of two independent,
tdentically distributed normal random variables.

8.2 Application of the Chi-Square Random Variable to Spectral
Estimation

The random variable
. 27|' 2
Z(w) = Ilf_fgo T 1 Xr(W)l

is, except for the limiting process, the power spectral density estimate
given by equation (7.19) with a boxcar data window. Further. it has
been shown that Z(w) is a sum of squares of two independent, normal
random variables X] and X2 with means zero and variances Sy (w)/2.
Thus, the random variable

_22w) _[_xiw 1P, [_X%w ]
bl =3 [\/—SX(W)NJ *[ Sx(w)/2]
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Chapter VIII  Uncertainty in Power Spectral Estimates

is a chi-square random variable with two degrees of freedom, as dis-
cussed in chapter III, and its mean is

E{Zp(w)} =2

Figure 32 is a plot of the variation of a chi-square random variable
about its mean as a function of degrees of freedom k. Eighty percent
of the values taken by the random variable will lie between the bounds
shown. Thus, these bounds represent the 80-percent confidence limits
on the random variable. Although other limits could have been plotted,
these limits have become standard for use in spectral estimation.

Since Zg(w) is a chi-square random variable with two degrees of
freedom, it can be seen from figure 32 that

P {o.x < -zié“’—) < 2.3} =P {0.1 < si(‘(‘z) < 2.3}

= P{0.1Sx(w) < Z(w) < 2.3Sx(w)} =08 (8.3)

which says that if Z(w) is viewed as a spectral estimate, 80 percent of
the time it will lie between 10 percent and 230 percent of the actual
power spectral density. Clearly, this uncertainty is unacceptably large.

8.3 Block Average

The finite Fourier transform spectral estimate given by equa-
tion (7.19) is essentially equal to Z(w) and thus can be expected to
have similar wide variability. Therefore, all spectral estimates by equa-
tion (7.19) will be assumed to be essentially chi-square random variables
with two degrees of freedom. This assumption will be employed for all
random data, even when the underlying random process is not known
to be Gaussian. Since the Gaussian model fits many real world phe-
nomena, such an assumption may not be unreasonable, especially if
one requires only a relative evaluation of uncertainty of one spectral
estimate with respect to another.

In order to obtain less variable estimates, suppose that the data
are broken into Ng blocks of length Tg such that NgTg = T,
as shown in figure 17. Then a technique similar to the test for
stationarity in chapter VI can be employed. A spectral estimate Sy (7)
for j = 1,2,...,Ng can be made over each block of data. Then,
assuming independence of the blocks, each estimate is a chi-square
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Figure 32. Variation of chi-square random variable.
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Chapter VIII  Uncertainty in Power Spectral Estimates

random variable with two degrees of freedom and their average

—_ -
Sxw) = 7= 2S¢ W)
B ;o1

is essentially a chi-square random variable with degrees of freedom &
given by
k=2Npg

As can be seen in figure 32, this greatly reduces the uncertainty of the
estimate. In fact, if a(k) is the left bound and b(k) the right bound in
figure 32, it can be seen by analogy with equation (8.5) that

P {a(k) < i)é;(;—d—) < b(k)} =0.8
or, more meaningfully,
SETIENRRE ] ERPE

For instance, if the data are broken into 50 blocks, then a(100) = 0.82
and 5(100) = 1.18. Thus,

P {1.225’)((:..1) > Sx(w) > 0.85Sx(w)} =08

or 80 percent of the time the actual spectral density will lie between 85
and 122 percent of the spectral estimate.

Of course, this reduction in variability has not been achieved without
cost. Recall that from equation (7.33), the bandwidth of the spectral
estimate is given by

27 1
Aw—T or Af—f

If the data are broken into blocks, the effective data length is no longer
T, but Tg. Thus, the effective bandwidth of the estimate Af has
increased to .

Af = Ts
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Introduction to Time Series Analysis

ﬁx(T)

Data used in gstimate

Data neglected
in estimate

-t T, T T
Figure 33. Utilized portion of autocorrelation estimate.

That is, in reducing the variability, the resolution has also been reduced.
Writing & = 2Ng = 2T /Tp yields the fundamental relation

k= 2AfT (8.7)

That is, the degrees of freedom are equal to twice the bandwidth in
hertz times the data length. Thus, for T fixed, a tradeoff dilemma.

Reduced variability <= Reduced resolution

is apparent. The only way out of this dilemma is to obtain more data
(if possible), that is, to increase T.

8.4 Uncertainty Analysis for the Blackman-Tukey Technique
Recall that the Blackman-Tukey spectral estimate is

Sx(w) = L[ u(r)Rx(r) e~ dr
X =2 —c0 X

where the lag window u(r) = 0 for |r| > Tr,. By a lengthy analysis,
again assuming normality of the data, Blackman and Tukey! were able
to show that this estimate can also be considered a chi-square random
variable with degrees of freedom

T
m
where Ty, is the half-width of the lag window. Thus, if the maximum
width T, = T is employed, again the estimate has two degrees of
freedom. The degrees of freedom are increased by taking T, < T. I
Since the autocorrelation can be estimated out to |[r| = T. taking
Tm < T leads to the disquieting result that variability is decreased by

k=
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Chapter VIII  Uncertainty in Power Spectral Estimates

not using data at large lag values r, as shown in figure 33. This result is
not so surprising when one recalls that less data went into the estimate
of the autocorrelation at large lag values (see eq. (6.7)), thus making
the variability of the autocorrelation estimate itself much higher at large
lags.

A similar tradeoff between resolution and variability is seen here as
well, since the bandwidth of this estimate will now be Af = 1/Ty.
Thus, again

k =2AfT

This relationship yields the number of degrees of freedom regardless of
which estimation technique 13 employed.
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Chapter IX
Digital Time Series Analysis

Most time series analysis is now done with the use of digital data,
that is, samples of the random process taken at discrete instants of time.
Digital computers are, of course, constrained to such data. However,
even stand-alone spectral analyzers usually work with digital data now.

The use of sampled data further complicates the estimation of the
various statistical quantities of interest, as will be seen. Usually, the
data are assumed to be sampled at equal intervals of time At, or at a
sampling rate of 1/At samples per second. However, in recent years,
techniques for analyzing data taken at random time intervals have been
developed, as will be discussed in chapter XII.

9.1 Shannon’s Sampling Theorem

Much of the understanding of the analysis of equally spaced sampled
data is'based on a marvelous result usually credited to Shannon!3
although its origin is actually much older!®. An interesting historical
aspect of Shannon’s work is that, although it was submitted to the
journal in which it appeared in 1940, it was not published until 1949,
apparently having been caught up in the secrecy surrounding the war
effort.

Suppose that X(t) is a stationary random process and that sampled
data X(nAt) exist for —00 < n < 00. On the basis of these data, it is
desired to estimate the values taken by the random process at all times,
that is,

X(@)y= i an(t)X(nAt) (9.1)

In other words, one wishes to interpolate between the data points to
reconstruct the entire time history. An equivalent interpretation of
equation (9.1) is that it is an attempt to expand X (t) in terms of a set
of special basis functions an(t). The data X(nAt) are the coefficients

BAGE 22 __JMIENTIONALLY BLANK
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Introduction to Time Series Analysis

of the basis functions. The basis functions an(t) are cposen such that
the mean square error between X (t) and its estimate X(¢},

Z=E { [X(t) - 5{(:)]2} (9.2)

is minimized. Since
2

J=E [xm- 5 an(t)X(nat)

n=-—0Q0

for ¢t fixed, the minimum occurs when

de oo
—aa:(t) = —2E{ X(t) - nxz—:coan(t)X(nAt)} X(tAt)} =0 (9.3)

or o
Rx(t-€At)- 3 an(t)Rx[(n- )AL =0 (9.4)

for —00 <€ < 0.
Now, recall that

Ry(r) = /_: Sx(w) € du

and thus, equation (9.4) becomes

n=-—00

/'co Sx(W) e—iulAt [ciut - i aﬂ(t)ciwnAt] dw=0 (9.5)

Now, comparing
0
Z an(t)e“‘mAt
n=-—o
with equation (2.4) for ¢ fixed, it can be seen that this series is the
Fourier series for a function f(w) that is periodic with period 27/ At.

Thus, for —m/At < w < 7/At, the function ¢t may be represented
exactly by the series

)
ezut = Z: an(t) eu.mAt
n=-00
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Chapter IX Digital Time Series Analysis

where

y T/At .
an(t) = ﬁ/‘ el 4 = sinc(wet — n)
2m —r/At

and w, = 7/At.
Now, suppose Sx(w) = 0 for |w| > we. Then equation (9.5) is
satisfied because Sx(w) causes the integral to be zero for |w| > w, and

the term in brackets causes the integral to be zero for |w| < w;. Thus,
the best estimate is

X(t) = i X(nAt) sinc(wet — nr)

The mean square error in this estimate is

e2=E{(X-5()2}=E{X2—2XX+X2}=E{(X-X)X}

X(t)}

= Rx(d) - i an(t)Rx(nAt—t) =0

n==00.

since by equation (9‘.3), E {X2} =F {XX} Thus,

=]

E=E { [X(t) - Y an(t)X(nAt)

n=-

as can be seen from equation (9.4) by letting ¢t = ¢At. Therefore
X(t) = X(¢t)!

This result shows that, if Sy(w) =0 for |w| > w, then a realization
of the random process X(t) is perfectly reproduced from the sampled
data X(nAt) by

X(t) = 2 Knt)sineluct =) (06)

This fundamental result is used in secure communications, long distance
telephone transmission, digital music systems, and a host of other
applications.

87

L L

TR 1

r..n.
P
-
Pt
r
poo
=
e
.

.
L

U U KU U U Lk K M L K U U



Introduction to Time Series Analysis

Although the derivation given here was for a stationary random
process, the result also holds for deterministic and transient functions
as long as their frequency content is limited to |w| < we, as can easily
be checked in two simple cases:

Case [
Let t = ¢At. Then

sinc(wclAt — n) = sinc{[(£ ~ n)x| = 6¢.n

where &y ,, is the Kronecker delta function, which is unity when ¢ = n
and zero otherwise. Thus,
(e <]
X(eAt)= Y X(nAt)byn = X(£AL)
n=-00

and the data are reproduced, regardless of the properties of X(t).

Case II
Consider the deterministic, transient function with amplitude A,

X(t) = Asinc(wet)

Then
X(nAt) = Asinc(wenAt) = Asinc(nr) = Adp

and equation (9.6)

[e ]
X(t)= Y Abpgsinc(wet — nw) = Asinc(wct)

n=-co

reproduces the time history.

9.2 The Nyquist Frequency and Aliasing

The cutoff frequency
T 1
ve= o= Im

is called the Nyquist frequency and is the highest frequency that can be
reproduced from data sampled at equal intervals At. To see this, suppose
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Chapter IX Digital Time Series Analysis

cosw t
1

A VATAS
v

cos W at

Figure 34. Dlustration of aliasing.
that X(t) is a sinusoid of frequency w; > we, that is,
X(t) = Acoswyt

as shown in figure 34 where the dots represent samples. From the
sampled data, the sinusoid of frequency w; > w, is seen to be indistin-
guishable from a sinusoid of lower frequency w,. Further, f. = 1/2 At
corresponds to a sinusoid with period 1/f. = 2 At. A sinusoid of this
frequency would be sampled only twice per period while coswgt is seen
to be sampled more than twice per period. Thus, wg < we and the
sinusoid of frequency greater than w, cannot be distinguished from a
sinusoid of frequency less than w,. Mathematically, consider the most
often encountered case where w; is only slightly larger than w; that is,
W] = W + wy where w; < we. Then

X(nAt) = Acoswinlt = Acos(we + wy)ndt
= Acos(nr + wnit)
= A(cosnr coswnAt — sin nwsinwynAt)
= Acos(nT — wnit)
= Acos(we — wylnAt = Acoswandt

where wg = we — wy. Thus, the frequency w; = we + w; is indistin-
guishable in the sampled data from the frequency wg = we — wy. This
phenomenon is called aliasing, because the frequency w; goes by the
new name, or alias, wg. Aliasing is the major problem introduced by
the use of (equally spaced) sampled data.

The presence of this phenomenon suggests that if one wants to
analyze data having a maximum frequency of frmax, One must use a
sampling rate

) 1
Sampling rate = X, > 2 fmax (9.7
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Introduction to Time Series Analysis

of at least twice the highest frequency in the data. Such data are
said to be sufficiently samplied. To use a much higher sampling rate
s wasteful, since Shannon’s sampling theorem implies that there is no
more information to be gained from the data. However, in the real
world, where few signals are ever truly band limited, some increase is
advisable. A 2.5 fmax sampling rate has been found to give excellent
results!? in most applications.

It should be mentioned that oversampling is sometimes recom-
mended!® to give more freedom in the reconstruction of sampled
data. If the data are sampled at a rate greater than twice the
highest frequency, then Sx{w) approaches zero at some frequency
lower than w.. Thus, the term in brackets in equation (9.5) need
not be zero between the highest frequency in the data and ... This
freedom allows one to choose other functions an(t) in the expansion
(eq. (9.1)) which converge faster than the sinc functions. These
faster converging expansions for X(t) are useful in many applications.
such as long distance telephone conversation and photographic image
reconstruction.

9.3 Effect of Aliasing on Power Spectral Density

In many applications, one may not know the maximum frequency
Sfmax- What happens if one just chooses a sampling rate and estimates
the power spectral density?

Let X(t) be a stationary random process with power spectral density

Sx() == [ Rx(r)emrd
xw) = o [ Rx(r)e™" dr (98)

-0

If the signal is sampled at intervals At, then the autocorrelation Ry (r)
may be estimated (as will be seen later in this chapter) only for r = j A¢
for —o0 < 7 < o0. Thus, the power spectral density estimate, which
may include aliasing, is given by the discrete expression (to be shown
later in this chapter) of the integral in equation (9.8)

. At & . . i
Sx(w)=35- 3 Rx(jayeeist

Jj=-o
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c(1)

“aAt3M 24t -At O At 2At aAt 4At |
Figure 35. Dirac comb function.
for |w| < we. The expected value of this estimate is
E {Sv(w)} -2 i Rx(jAt)e~widt
‘ 27
j==oo
at [ —twT
=35 o e(r)Rx(r)e dr (9.9)

since Ry (jAt), which is estimated from discrete data, will be shown to
be an unbiased estimate of Ry (7At). Here

c(r) = i 8(r—=jAL) (9.10)

j=-0o

is the Dirac comb function shown in figure 35.
The Dirac comb function is periodic with period At. Thus, it may
be expanded in the Fourier series

for all . The Fourier transform of this series is

o0

Clw) = 2-1;/“ olr)e ™ dr=x 3 Slw-2kwe)  (9.11)
o k=—o0

another comb function, this time in frequency as shown in figure 36.
Thus, the Dirac comb function is one of those unusual functions whose
Fourier transform has the same form as the function itself.
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Introduction to Time Series Analysis

C(w)

w
-Smc 40, -, 0 2w, 4w, 6w,

Figure 36. Dirac comb function in frequency.

sx( w)
Wy

CIJO '2mc

+ + + + + p— D
-4wc -3c.)<= -2mc ~We (o} @, 2c.Jc aooc 4mc

Figure 37. Aliased frequencies in spectral estimation.

Since equation (9.9) is just the Fourier transform of the product of
two functions, by the convolution theorem (eq. (2.8)), it may be written

- m w
E{$x(w)} = at / CW)Sxlw-u"do' = Y Sx(w—2kuc)
—oo k=-00
(9.12)

which is a sum of the values of the actual power spectral density. In
fact, for a power spectral density as shown in figure 37, power at all
the frequencies denoted by arrows appears as power at the frequency
wg in the aliased spectral demsity. It should be emphasized that
figure 37 represents an atypical case, which would result from very
badly undersampled data.

Another way of looking at this phenomenon is to note that since the
power spectral density is an even function of w,

Sx (wo—2kwe) = Sx(2kwe—wo)
and power is seen to be “folded” about the Nyquist frequency. much
as one would fold a fan, with power at odd multiples of w. appearing

at the frequency w. and power at even multiples of w. appearing at
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Chapter IX Digital Time Series Analysis

the frequency of zero. This situation is illustrated in figure 38. This
figure displays two estimates of the power spectral density of sunspot
activity obtained from the data mentioned earlier over the years 1610~
196010. For the first estimate, the sampling rate was one sample per
year yielding a At of 1 year and Nyquist frequency of Y2 cycle/year.
This estimate has 20 degrees of freedom. Note the appearance of a peak
near f = Y11 cycle/year corresponding to cyclic behavior in the data
with an 11-year period. Also shown in figure 38 is a spectral estimate
of the same phenomenon with a At of 7 years. Thus, the Nyquist
frequency is Y14 cycle/year and the sunspot activity is undersampled. In
this spectral estimate, the power in the signal at frequencies higher than
the Nyquist frequency has been folded about the Nyquist frequency and
now appears as power at lower frequencies. In particular, the peak at
f = Y11 cycle/year now appears as a peak near f = Y21 cycle/year
corresponding to a period of 21 years. If the cyclic behavior was a
pure harmonic with frequency Y11 cycle/year, which was sampled with
a Nyquist frequency of Y14 cycle/year, the power at Y11 cycle/year
would alias back to the frequency Y14 — (V11 — ¥14) = Y14 = Y11 =
477 cycle/year, which is close to the frequency shown. It might be
mentioned that the apparent increase in the amplitude of the peak is
due to the power preservation feature of the spectral estimates discussed
in chapter VII. :

12210

10

At-7 years

Ate1 year

A I I - e =
.10 .18 .20 .28 .30 .38 .40 48 .fo
'

08
Figure 38. Power spectral density estimates of sunspot activity.

When working with data of unknown frequency content, the only
way to be sure of avoiding aliasing is to pass the signal through a
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d(tIx(t)

Noah AA
"V R

Figure 39. The windowed data function.

low-pass antialigsing filter, which filters out all power at frequencies
higher than the Nyquist frequency based on the chosen sampile interval
At. Sometimes it is advantageous to do this even when the frequency
content is known. For example, if one is interested in only the low-
frequency content of a signal that also contains high frequencies, it
is possible to reduce the sampling rate and thus the computations
required by filtering out the uninteresting higher frequencies. Such
an antialiasing filter must, of course, be an analog filter applied to the
continuous data before it 13 digitized, since after digitization there is no
way to distinguish between actual power and aliased power. This point
cannot be overemphasized as insufficient sampling will cause the data
to be not only worthless but also misleading, as illustrated in figure 38.

9.4 Gibbs’ Phenomenon

There is another more subtle way in which aliasing can enter into
digital spectral analysis. For such analysis, it is always assumed that
the random process X(t) is band limited. However, to use a finite
length of data, it is necessary to suppose that the random process X(t)
is multiplied by a data window d(¢) and to introduce the windowed
Fourier transform (eq. (7.16)):

Xp(w) = 2% /_ Z d(8) X (£) e~ dt

This finite transform is exactly the Fourier integral transform of the
windowed data d(t)X(t), which is identically zero outside the region
(0,Tg), as shown in figure 39.

Now, it can be proved! that a function which is nonzero for only
a finite interval of time cannot be band limited in frequency. Thus.
the windowed data cannot be band limited and aliasing must resuit.
Unfortunately, nothing can be done about this aliasing as long as one is
confined to a finite length of data. However, if Tg is sufficiently large.
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Chapter IX Digital Time Series Analysis

the power at high frequencies necessary to reproduce the function is
ordinarily so low that it does not destroy the analysis in the frequency
range of interest.

Another possible source of aliasing is seen by recalling that the
Fourier integral representation (eq. (2.2)),

£(t) = /_ Z Flw) et du

is exact only where f(t) is continuous. At a point of discontinuity tg,
it converges to the average value

f(tg+);f(tg-)

of the right- and left-hand limits of f(t) as ¢ approaches ty, provided
that these limits exist. Thus, if there are discontinuities at the begin-
ning and end of the record length, as shown in figure 39, the finite
Fourier transform (eq. (7.16)) converges to the average value at these
discontinuities. Further, because of Gibbs’ phenomenon,? if one tries
to represent a discontinuous function by a Fourier integral over a finite
range of frequencies, the representation produces high-frequency oscil-
lations near the points of discontinuity. Only by allowing unbounded
frequencies are these oscillations removed. Thus, the presence of these
discontinuities causes more power at the higher frequencies and, thus,
more aliasing.

This end-point discontinuity source of aliasing may be reduced by
using a data window that is zero at the ends of the record, that is,

d(0) = d(Tg) =0

This removes the discontinuities in the record and reduces this
cause of aliasing. The Hanning, cosine bell, and Bartlett windows, for
example, fulfill this requirement. Some aliasing may still be produced,
however, caused by discontinuous derivatives at the ends of the record.

A similar analysis holds for the Blackman-Tukey method of estima-
tion as well. Thus, one ordinarily requires the lag windows to satisfy

w(=Tm) = u(Tm) =0

C '; 95

LLL LYY Frooi

P

M

-l
.

it



LLLLLELUELD Lok

Introduction to Time Series Analysis

9.5 Relationship Between Continuous and Discrete Fourier
Transforms

Shannon’s sampling theorem allows determination of the relation-
ship between Fourier transforms of continuous and discrete data for
band-limited random processes. To eliminate the effects of aliasing in
the following discussion, it unll be assumed that all digital time histo-
ries have been passed through an antialiasing filter and are thus band
limited.

Let X(t) be a random process that is limited to the band |w| < we.
where w, = m/At and At is the sample interval. Then, its Fourier
integral transform (eq. (2.3)) is given by

Xw) = 55; /_ : X(£) €™t dt

—-l—/wdt ~dut fj X(nAt) sinc(wet — n)
—271' oo e n SINC(We nmw

n=-—-o00
0 1 o0 .
= T X(nat) — / ="t sinc(wet — nm)dt  (9.13)
—=—00 27 /oo

where Shannon’s sampling theorem (eq. (9.6)) has been applied.
Now, the Fourier transform of the sinc function is

-

et sinc(wet — nw)dt = sincy e~ Wwy/we dy

1 [° e—imru/wc /co

o -0 27w, —0o
— N W
=l FE= (wl <we)
0 (Otherwise)

upon setting y = w.t — nw, since

o0
- —wt gy _ [T (It < 1)
/_co sincwe dw = {0 (Otherwise) (9.14)

Thus, equation (9.13) becomes

& P XnayewnAt (lu] < w)

X(w)={ =~ n=-w=

0 {Otherwise) (9.15)
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Chapter IX Digital Time Series Analysis

S\ (NJat T

|< Interval Represented >

Figure 40. Interval represented by digital data.

since we = 7/At. This exact expression would allow calculation of the
Fourier integral transform from discrete data X (nAt) for —oc < n < o0,
and is an extension of Shannon’s sampling theorem; that is, the Fourier
transform of the signal can also be reconstructed from the sampled
data.

In actual practice, the amount of data is always finite. Usually,
knowledge of the values X(nAt) for n =0,1,2,...,N — 1 is assumed.
These values are taken to represent the sample function X(t) in the
interval (—~At/2, T~ At/2) as shown in figure 40 where the dots indicate
data points. That is, the data point X(¢At) is thought to represent the
time history in the interval ((¢ — Y2)At, (€ + Y2)At).

Now, consider the finite Fourier transform (eq. (7.12)) over this
interval

x 1 T-At/2
T(w) = 2 Atz

g

(£) =t gt = % /_ : do(t) X (t) e~ dt

(9.16)
where dp(t) is a boxcar function taking the value unity for —A¢t/2 <
t < T - At/2. By the convolution theorem (eq. (2.8)) and substituting
equation (9.15),

o0
Xrw) = / Do(w = W) X(w')du'
-0
At — —iwndt wwe my iw ' nat g o1
=5 Z X(nAt)e='w / Do(w") e™ dw

n=-o0 w=we¢

where Dg(w) is the Fourier transform of dg(t). The latter integral,
which is to be evaluated only for |w| < we, represents an ideal flter
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Introduction to Time Sertes Analysis
operating on the boxcar function, that is,

Wwwe

I(n,N,w) = / Do(w”) 4" ™At 4 ~ do(nAt)

w—=wc

For example, figure 41 presents the real and imaginary parts of the
integral for N = 64 and w = w¢/2. The real part of the integral very
closely approximates the boxcar function, while the imaginary part is
negligible. The case shown is typical. The approximation is better as
N — oo and |w| — 0 and worse as N — 0 and |w| — w.. From this
approximation, equation (9.16) becomes

N-1
Xr(w) = % Z X(nAt) e~ *nat
n=0

(9.17)

and it can be seen that the finite summation on the right-hand side
approximately represents the finite Fourier transform of the signal X(¢)
over the interval (-At/2,T — At/2).

It should be noted that because of the assumed stationarity of the
random process X(t), the average properties of the random process in
the interval (—At/2,T — At/2) are the same as those in any interval
of length T. Thus, fundamental relation (9.17) will be used as the
definition of the discrete finite Fourier transform in this monograph.

9.6 Digital Blackman-Tukey Estimation

Based on the understanding of digital data analysis developed in the
previous sections, it is possible to develop discrete forms for spectral
estimation. Suppose that NV samples X(nAt) forn=0,1.2,...,. V-1
from a stationary random process exist. Then, taking T = .VAt and
T = jAt, the autocorrelation estimate analogous to equation (6.7) is

R N-j—1
Rx(jm)=N—1_-7 S X(nAOX((n+iAl  (9.18)
n=(

for ; = 0,1,2,...,N — 1. This yields an unbiased estimate of the
autocorrelation at these discrete lag values, j At.

Likewise, if Ty = m At is the width of the lag window, the power
spectral density estimate is defined as the discrete approximation to
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Introduction to Time Series Analysis

equation (7.7),

Sy(w) = -;-\-E u(0)Rx(0) + 2 Z u(JAL)Rx (jAL) coswjAt| (9.19)

J=1

by analysis similar to that which led to equation (9.17).
If data on two jointly stationary random processes exist, similar
expressions for the cross correlation and cross spectral density are

N-j)-1
Rxy(jat) = v—J Y X(nat)Y|(n+j)At) (9.50)

n=(

N—-j-1
Ryx(gm)-—-‘— S Y(nAt)X[(n+5)At] (9.21)

n=0
for7=0,1,2,...,N -1 and
m

Sxy Z u(jAL) Rxy (jAt) e~ widt (9.22)

since the cross correlation is not generally an even function of 7.

9.7 Discrete Finite Fourier Transform Estimation

A similar discrete version of the finite Fourier transform spectral
estimate may be developed. If the block size is Tg = bAt, then
equation (7.16) may be estimated by

Xr(w) = ﬁ Z d(nAt) X (nAt) e~ wnat (9.23)

n=0

from the discrete data X(nAt) forn=0,1,2,...,b-1.
The spectral density estimate is then given by equation (7.15),

Sx(w) = Ws| Xp(w)|? (9.24)
For jointly stationary random processes, the cross spectral density is

Sxy (w) = We Xp(w)Yr(w) (9.25)
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Chapter IX Digital Time Series Analysis

where Yp(w) is given by equation (9.23) with X(nAt) replaced by
Y (nAt). The window correction factor Wg can usually be determined
analytically.

9.8 Frequency Domain Window Insertion

Many times, particularly when one wants to investigate the effects
of various windows, it is more efficient to insert the windows in the
frequency domain. Expressions by which this may be achieved are
quite easily developed. Note first that, although the spectral estimates
in equations (9.19), (9.22), (9.24), and (9.25) are given as continuous
functions of frequency, the data are sampled, and thus these expressions
should not be evaluated at frequencies higher than w. = w/At, the
Nyquist frequency. Further, since the data have finite length, the
resolution criterion (eq. (7.33)) suggests that the estimates should
not be evaluated at frequencies that are too close together. The
actual resolution depends on the window chosen, of course. However,
equation (7.33) provides a reasonable guideline.

Blackman-Tukey estimation. Now, recall from equation (7.2) that
the windowed spectral estimate may be written as

Sx(w) = = / ® w(r) Ry(r) e dr

=2—1r o

By the convolution theorem, (eq. (2.8)), this estimate becomes
- w -
Sx(w) = / U (w=u")S0(o)do (9.26)
-0
where, since u(7) =0 for |7| > T,

w 1 Tm " .
So(w) = = / Ry(r)e™™ dr
27 ST
is the spectral estimate (eq. (7.1)) with the boxcar lag window (i.e.,
effectively no window at all). Thus, equation (9.26) states that the
spectral estimate with an arbitrary lag window is the convolution of
the spectral estimate with a boxcar window. This allows one to first
estimate the spectral density with a boxcar lag window and then insert
various other windows in the frequency domain.
The frequencies at which spectral estimates are evaluated is a matter

of choice. The standard choice in Blackman-Tukey estimation is

kx km
wk—'i,:—:n—a—t (k—0,1,2,...,m)
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which yields as many estimates as lag points were used, reaches the
Nyquist frequency when k = m, and provides a bandwidth of

T 1 -
Aw = o or Af= T (9.27)

Although this choice does not yield full resolution by equation (7.33). it
does have the virtue that it allows simple window insertion. Note that
in this case, the discrete analog of equation (9.26) is

Sx(we) = Aw Y Ulwe—w;)So(w;) (9.28)

j==-m

since go(uj) =0 for |j] > m.
Now, from equation (7.10)

T 0
Ulwg —wj) = 2— Z an sinc[(k — j — n)w|
(e <]

z aﬂ&k.j +n

Thus, equation (9.28) becomes

k+m
2 anSo(wk-n) (9.29)

n=k—m

Sx{wk) =

NIH

which allows window insertion in the frequency domain. Necessary
terms for w < 0 are obtained from Sg(w_;) = So(wi). Equation (9.29)
shows that windowing is equivalent to applying a low-pass moving-
average filter (to be discussed in chapter XI) to the unwindowed
spectral estimate. For exampie, to apply the Hanning window where
ag = 1,8; = 1/2, and all other a,’s are zero,

" 1. 1- 1.
Sx(wg) = =So(wk-1) + 5S0(wk) + = So(wk+1)
4 2 4

Finite Fourier transform estimation. A similar expression for
frequency domain window insertion may be developed for the finite
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Chapter IX Digital Time Series Analysis

Fourier transform. Recall equation (7.16):
Xr(w) = i/x d(2) X () =t dt
Ry W)= 27[’ —oo <
Applying the convolution theorem (eq. (2.8)) to this equation results in
Q0
Xp(w) = f D(w—u') Xp(w') du’ (9.30)
-0

where Xr(w) is the finite Fourier transform (eq. (7.12)) of the data
with block length Tg = b At,

X1( =1 TBXt =it gt
T“’)‘21ro (t)e

since X(t) =0fort <Oandt > Tg.
Standard practice in the finite Fourier transform estimate is to
assume that b is even and to evaluate the estimate at the frequencies

2k 2kw
w _E_b-A_t (k'—0,1,2,...,b/2) (9.31)

This choice yields half as many estimates as data points, reaches the
Nyquist frequency when k = b/2, and provides a bandwidth of

27 1
Aw = 5 or Af = 5 (9.32)
Note that, for a similar data length, this is twice the bandwidth of
the Blackman-Tukey estimate and provides full resolution by equa-
tion (7.33). The frequency choice in equation (9.31) also allows highly
efficient computations as will be seen in chapter X.
At these frequencies, the discrete analog of equation (9.30) is

b/2
Xrlwe) =Aw Y D(wg—wj)Xr(w;) (9.33)
J=-=b/2

Now, recalling that the data window is defined only for 0 < ¢t < Tp,
analogous to equation (7.10),

_ TBe_i”T3/2 s . wTg
D(w) = B an, Sinc (T - mr)
n=-00
103
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Thus,

Tg(-1)%¥-1 & . .

3(4_) Z ansinc((k — j — n)7|
T n=-0oc

~1)-7 &

- Sa X et

n=-=00

D(wg —wj) =

and equation (9.33) becomes

1 k+b/2

Xr(we) =3 Y. (=1)"anX1(wkon) (9.34)
n=k=b/2

~

which again allows window insertion in the frequency domain. Nec-
essary terms for w < 0 are obtained from Xp(—k) = XF(wg). For
example, if the Hamming window where ag = 1.08,a; = 0.46, and all
other an’s are 0 is used as the data window,

Xr(wg) = —0.23X7(wie—;) + 0.54 X (wi) — 0.23 X (wis1)

Because of the simplicity of equations (9.29) and (9.34), the data
are practically always left unaltered in the time domain and any desired
window is inserted in the frequency domain.

9.9 Autocorrelation Estimation Via Discrete Fourier
Transformation

Estimates from discrete data are not always directly analogous to
those from continuous data. For example, the autocorrelation estimate
in equation (7.25) is unbiased for continuous data. However. for a
discrete set of data X(nAt) forn=0,1,2,...,b—1, the discrete Fourier
transform (eq. (9.23)), assuming a boxcar data window and evaluation
at the frequencies

2rk
wk—b—A—E (k—0,1,2,...,b/2)
is given by
b—1
At -
wi) = 5= Z (nAt) e~ 2mkn/b = Xor(wy) (9.35)
104
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Chapter IX Digital Time Series Analysis
Then, the spectral estimate (eq.(7.19)) becomes

- 2
Sx(wi) = = | X1 (wi)[? (9.36)
bAt

which is an even function of w since Xp(w_i) = X7(wg). This can be
employed to estimate the autocorrelation, based on equation (7.25), as

b/2~-1
Rx(jat) = TERES 5 ) Reiend
k=-b/2
b/2-1
=Wg(Aw)? Y |X7(wy)|2etZmki/b
k=-b/2

The upper limit of the sum is /2 — 1 because only one-half of the values
at each end of the spectrum is added due to the discontinuity at those
points.

Now, note from equation (9.35) that

Xr(w—i) = Xp(wp~k)

since
e—i2m(b—k)j/b _ ,—i2m(~k)j/b

Thus, the estimate may be written

b=—-1
Rx(jat) = Wr(Aw)? > | X1(wy)|2ei2rki/b (9.37)
k=0

forj=0,1,2...,b—-1.
How good is this estimate? Its mean is

b-1 '
E{Rx(jot)} =Wr(aw)?? 3 E{|Xr(w)?} e279/0  (9.38)
k=0

where, by equation (9.35),

At 2b—-1b6-1 .
E{iXrwt} = (55) T T Rxlle-r)aq emiarr-0k
r=0{=0
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Thus, equation (9.38) becomes

£ [R anl = VR =< _ S Lizn=ret) b1 ¥
x(GaY)] = TR T Rxle-nag 3 e ]
r=0 (= k=0

Now, note that for all real or complex values z,

Eh{% (z#1)
J=0

N (z=1) (9.39)

This series is of fundamental importance in the analysis of discrete data.
Thus,

ol D — JA2n(j=r+l)
2n(j—r+)/0]% _ 1€ — b (5. .
Z [e‘ wg-r+8)/ ] S 1= e2rG-r+0/b b (85,r— + 85 b4r—t)

k=0
(9.40)
The two delta terms arise when n — » — ¢ is some integer multiple
of b, which occurs only for j —r+ ¢ = 0 and j — r + ¢ = b since
~(b-1)<j—-r+£€<2(b-1). Thus,

E{Rx(i80} = ZB ((b- 5)Rx(780) + jRx((b-1)At]}

Recall that a boxcar data window results in a Bartlett lag window.
Therefore

__1 i\t
W’*‘uuAt)‘(l b)
and

E{Rx(80} = Rx(80) + 7= Rx[(6 - )ad

Therefore, the estimate is seen to be biased.

9.10 Zero Insertion

The bias in this estimate was caused by the presence of the second
term in equation (9.40). This term may be eliminated by the technique
of zero insertion. Suppose that the original b data points X(nAt) for [
n=0,1,2,...,b—1 are augmented by b zeros, that is,
X(nAat) =0 (n=0bb+1,...,26-1)
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Chapter IX Digital Time Series Analysis
The discrete Fourier transform of this entire sequence is then

2b—-1

Xr(we) = EA_t Y- X(nAt)e~i2mkn/2b
n=0
A‘ Z X(nAt) e=imkn/b (9.41)

Note that this has the effect of reducing wy by a factor of 2, that is,

wk
= — k= ,2,...,b
with Aw = 7/bAt. Thus, the spectral estimate (eq. (9.36)) when
zeros are inserted has the equivalent bandwidth of a Blackman-Tukey
estimate.
Now, analogous to equation (9.37),

2b-1
Rx(jat) = Wr(Aw)? 3 | Xr(wi)|? ™9/t
k=0 (9.42)

is the expression used to estimate the autocorrelation. The mean of
this estimate is

25—1
E{Rx(JAt)} = 2Wg(Aw)? Z E{lXT(Wk)lz} gimki/b
k=0
where now
2b6=1b6—1
E {lXT(Wk)|2} = (At) Z Z Rx((¢ - rAt]e —in(r—0k/b
r=0¢=0
Thus,
. 5 il
E [Rx(jAt)] 552 Z > Rx[(¢-ray Z [ vr<:-r+t)/b]
r=0(=0 k=0
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Introduction to Time Series Analysis

However,

127() =r+¢)

2b6j,r—l

2b-1 :
) [eivr(j-r+l)/b]k 1= -
= = enG—r+07b

since j — r + ¢ never reaches 2b. Thus,
o W N :
E{Rx(jan} = =R - j)Rx(jal) = Rx (o)

using the same b-point window correction factor as before and the
estimate in equation {9.42) is unbiased. The same zero insertion
technique should also be used for estimation of a cross correlation.

9.11 Digital Spectral Estimation Procedure

Now that all of the required relations have been developed, it is
possible to develop a decision-making procedure that one should follow
when attempting to estimate power spectral densities with digital data.
This procedure should be thought through before one ever begins to take
data.

Step 1: Are the data stationary? Since all the analysis developed
thus far is based on this assumption, these techniques are not valid if
the underlying random process is not stationary. Whether or not a
particular time history is a sample function of a stationary random
process is a decision that must be based primarily on engineering
judgment. However, a test of stationarity is discussed in chapter VI.
If the data are not stationary, it may be possibie to detrend them and
make them appear stationary without losing the information of interest.
This technique is discussed in chapter XI. ,

Step 2: What is the maximum frequency of interest fmax? This
defines the sampling rate since

1
At <
~ 2fmax

Step 3: Does the signal contain power at frequencies higher than
Sfmax? If so, the analog data must be passed through a low-pass
antialiasing filter before it is digitized. '

Step 4: What frequency resolution is required? For the finite Fourier
transform technique, the required resolution sets the block length Tg, i

since
Af:ﬁ (Tg =bAtL)
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Chapter IX Digital Time Series Analysis

or if zeros are inserted,
1
Af = 2—7-;-
For the Blackman-Tukey technique, the required resolution sets the

width of the lag window T, since

Af = ——  (Tm=mal)

m

Step 5: How much accuracy is required? This sets the total length
of data to be taken since the degrees of freedom for the finite Fourier
transform technique are

k=2Npg

where Npg is the number of data blocks. For the Blackman-Tukey

technique,
2T 2N

k=a— ==

T Tm m

where NV is the total number of data points. If it is not possible to
obtain this many data points, then one must relax the requirements on
either resolution or accuracy or both.
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Chapter X
The Fast Fourier Transform

In the late 1960’s, the field of time series analysis was completely
revolutionized by the introduction of highly efficient techniques for
computing the discrete Fourier transform. The application of these Fast
Fourter Transform, or FFT, techniques on modern digital computers
was popularized by Cooley and Tukey!® in their paper entitled “An
Algorithm for the Machine Calculation of Complex Fourier Series.”
With the use of the FFT, the finite Fourier transform approach to
spectral estimation became so computationally efficient that it replaced
the Blackman-Tukey approach for most practical applications. Even if
one is interested in only the autocorrelation, it is often more efficient to
first estimate the power spectral density and then transform to obtain
the autocorrelation rather than to use the more direct lagged product
approach (eq. (9.18))!

There are actually many FFT algorithms in common use today. In
fact, most are tailored to take advantage of the particular architecture
of the computer on which they are implemented. However, all are
concerned with evaluating the discrete Fourier transform (DFT)

N-1
Zp=> zZw*  (k=0,1,2,...,N-1) (10.1)
7=0
where z; is, in general, a sequence of complex numbers and

W = e—iZTI’/N

is an Nth root of unity. Note that except for the scale factor At/2r,
equation (10.1) is precisely the discrete Fourier transform of equa-
tion (9.35) if the z;'s are taken to be real. Note also that because
of the properties of W, equation (10.1) is periodic with period N and
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Introduction to Time Series Analysis

may thus be considered to be defined for all k; that is, Zy.n = Z4.
The inverse of equation (10.1) is

L M=t N
= e w2 10.2
Z= EO 2 (10.2)

since substituting equation (10.1) in equation (10.2) results in

| NoIN-1 g 1 NSV N2l GotyyNTE
— -- - — —127(j—
N L WU =g 23 [e ]
k=0 ¢=0 (=0 k=0
1 N-1
=5 2 #ie=1z
{=0

upon use of equation (9.39).

If a single multiply-add operation is taken as a measure of com-
putational work, straightforward calculation of equation (10.1) would
take N2 operations, since for each k, the N data points z; would
have to be multiplied by the appropriate complex exponential and then
added to the sum, requiring NV ogerations for each k. However, since
k=0,1,2,...,N 1, there are N* operations for the complete calcula-
tion. This discussion assumes, of course, that the complex exponentials
W have been previously calculated.

10.1 Theory of the Fast Fourier Transform

The basic idea of the FF'T goes back at least to 1903,!7 when Runge
noticed that if the number of data points V is not a prime integer.
the number of operations can be reduced by splitting the calculation
up into parts. Consider the simplest case when .V = AB. Then the
data may be broken up into A subrecords of length B as shown in
figure 42, where a = 0,1,2,...,4 — 1 is the index of subrecords and
b=0,1,2,...,B — 1 is the index within a subrecord.. Then the time
index j in equation (10.1) may be written

J=aB+b (10.3)
which simply states that b is equal to j modulo B. Likewise, there will {

be N = AB values of the frequency index k. Suppose the frequency
data points 2y are broken into B subrecords of length A. Then letting
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Chapter X  The Fast Fourier Transform

Irambed I T |
t

012 B-1 B B4+ 2B-1 AB=N
—— T — ——— N ——
length B
a=0 a=1 a=A-1

Figure 42. A subrecords of length B.

¢=0,1,2,...,B—1 be the index of subrecords andd =0,1,2,...,4-1
be the index within a subrecord yields

k=cA+d (10.4)

Thus, equation (10.1) may be written

A-1B-1

Zeava= D 3 zappoW(eBHOcA+D (10.5)
a=0 =0

where

W(aB+b)(cA+d) - WacABWadBWbcAWbd

However,

WacAB = WacN = e—i21rac =1

and thus this term need not enter the computation. Then, equation
(10.5) may be written

Twiddle
factor
Bl bea wha dB
Zeara = 3 WHA W N 2 p W0 (10.6)
=0 a=0

1st transform

2nd tr;nsfom

This expression has the character of a double Fourier transform. The
first transform

A-1 odB
Z: z2aB+6W

a=0

requires A operations and must be done for each b (B of them)
and each d (A of them). Thus, A%2B operations are required by
the first transform. Each of these transforms (AB of them) must

113

I H H U U L Lk K H LK U U H



Introduction to Time Series Analysis

then be multiplied by the appropriate exponential Wb called the
“twiddle factor” by Gentleman and Sande.!® This requires another
AB operations. Finally, the second transform requiring B operations
must be accomplished for each ¢ (B of them) and each d (.4 of them).
Thus, AB? operations are required by the second transform. The total
number of operations Np is

Nop = A2B+ AB+ AB? = AB(A+1+B)=N(A+B+1)

compared with N? for the direct evaluation. Suppose, for example.
that V = 100 = 10 x 10. Then the 10000 operations required by the
direct transform would be reduced to 2100 by splitting the calculation
into parts. Further, this reduction is due to only one reduction. If A
and/or B is not prime, the technique can be applied again.

The ultimate reduction of course comes when the number of data
points is some power of 2, say 2P. Then the calculation can be
reduced to 2P — 1 transforms, each of length 2. To see this, note.that
equation (10.1) may be written

N-1
2 = E zJ,e—tZrk]/N

=0
N/2-1 N/2-1
= E z2jc—t2wk(2.7)/N + 2241 e—i27k(2+1)/N
j=0 7=0
Even terms Odd terms
N2t , ‘ N/2-1
= Z z2je—z21rk1/(N/2) +e—i2mk/N Z 22541 e—127k3/(N/2)
J=0 5
~ Twiddle
Transform of factor Transform of
N/2 points N/2 points

(10.7)
Thus, by separating the transform into even and odd terms. the
calculation has been reduced to two transforms of N/2 points. Again
note the appearance of the twiddle factor. Now, N/2 = 2P=!| so that
the procedure may be repeated until the ultimate reduction is achieved.
For example, the transform of eight data points would be accomplished
as shown in figure 43 where the dots indicate transforms of two data
points. This scheme results in a total number of operations equal to
N log, N rather than the N2 for the direct approach. For example. with !
N = 128, the direct approach would require 16 384 operations while the
FFT would require only 896.
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Chapter X  The Fast Fourier Transform

29 2, 2, Zg I, I3 23 %,

Figure 43. Schematic of eight-point FFT.

The above explanation, found in Nussbaumer,!? is one of the most _

easily understandable. For actual coding, binary notation is introduced
for the time and frequency indices and the transforms are calculated
recursively. To achieve the desired speed, the complex exponentials
must be calculated efficiently as well. By using the fact that W™ =
WW7™=1, this calculation can also be done recursively, with evaluation
of only W itself required from a series. Great care is also given to
the storage of the intermediate results since the data are used in
complicated orders as can be seen in figure 43. The k values of the
transform also do not remain sequentially ordered. Thus, a massive
schuffling of data is required. For this reason, there are many different
versions of the FFT, which are very computer specific. Good references
to these methods are Otnes and Enochson!? and Nussbaumer.!? In
spite of the seeming complexity of these techniques, implementation is
not overly arduous. For example, Gonzalez and Wintz?0 published a
FORTRAN program for an FFT algorithm consisting of only 34 lines
of code, including generation of the complex exponentials W!

10.2 Properties of the Discrete Fourier Transform for Real-
Valued Data

Although the idea of an FFT can be employed only if the number
of data points NV is not prime, the discrete Fourier transform (DFT)
(eq. (10.1)) always exists. Further, the DFT is sometimes necessary for
use in spectral estimation when there are constraints on the number of
data points or greater freedom in the selection of frequency resolution is
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Introduction to Time Series Analysis

required. However, it should be emphasized that the DFT is generally
computationally less efficient than the Blackman-Tukey technique.

The DFT (of which the FFT is a subset) has some useful properties
for real-valued data z; = z;. In this case, note that equation (10.1)
may be written

N-1
Xe= Y zjem®&i/N  (k=0,1,2,...,N-1)

j=0
Now,
N-l - .
Xk = Z zjez21rk3/N = X;
j=0
Further,
N-1 ) ‘ N-1 . ‘ o
XNk = Z ch—121r(N—k)J/N = Z Ijet21rkJ/Ne—121r]
J=0 7=0
N-1 ] _
=S e e
j=0

since e~%277 = 1. Thus, the DFT is periodic with period N since
XNk =X_k

Further, only N/2 of the points need to be calculated since
Xn-k = Xj

(Recall that the Nyquist frequency occurs at k = V/2 if )V is even.)

For real data, the power of the DFT is not being fully utilized since
only half of the transforms are of interest. However, suppose one has
two real sequences z; and y; to be transformed. Then one can make
better use of the DF’i‘ by defining complex data

2, =z;+ iyj
Then
N-1 ) _
2 = Z (.'r]' + iyj) e~V2mkI/N o X +1Y;
J=0
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Chapter X  The Fast Fourier Transform

and
N-1

Vo= Y (z; = iy;) e 2RIIN = X, iy
7=0

Thus, the transforms of the real sequences can be recovered by

N-d . Z. + 22,
= Y gemmki/N o kT Nk
Xk z;5€ 2

J=0

and
& amn _ 2= 2k
Y, = e~k /N _ YR
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Chapter XI
Digital Filtering

A filter is any physical device or mathematical operation which 13
applied to a time history in order to change it in some way. Filters are
usually broadly classified as low pass, passing the low frequencies and
attenuating the high frequencies, high pass, passing the high frequencies
and attenuating the low frequencies, band pass, passing frequencies in
some band while attenuating both the higher and the lower frequencies,
and band reject, attenuating the frequencies in some band. Many times,
it is of interest to perform such an operation after the time history is
digitized. Thus, one is led to the subject of digital filters.

11.1 Linear Filters

The most prevalent filters are linear. Consider the ordinary linear,
shift-invariant system shown in figure 44, where X(t) and Y (¢) are
related by

o0
Y(t) = / KX (¢t - 1) dr (1L.1)

-00
By definition, h(t) is a filter since the time history X(t) is changed into
the time history Y(t). If X(t) is band limited and is known only at

discrete times n At for ~0o < n < oo, then by Shannon’s sampling
theorem (eq. (9.6)) and equation (5.3), equation (11.1) may be written

1 z 1 (t-nx/we) -
- — - tw(t=nw/w : WY/ w
Y{(¢t) - X(nAt) z / dw H(w)e c / sincye < dy

n= -0 -0
o we
== Z X(nAt) —/ H(w) ew(t=n®/we) 4, (11.2)
we n=m-co “We

Further, since X(t) is band limited and the system is linear, Y(¢) is
also band limited because of the convolution theorem (eq. (2.9)). Thus,
evaluating equation (11.2) at ¢t = &k At results in
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Introduction to Time Series Analysis

X —— O ey YO L L E KK

-
-
o
~

Figure 44. Linear filter.

Y(kAt) = i hol(k—n)At) X (nAt) = i hy (G AL) X[(k = 7)A¢

. f‘ - vr "v ‘a -
n=-0Q0 J==00 ; ; N H
(113) i i - N . L r }
where
hy(t) = 5= » H(w) et duw

Note that hy(t) is not quite equal to h(t) At since A(t), being a transient
function, cannot be band limited. Thus, h(¢)/At physically represents
a filtered impulse response function.
Based on equation (11.3), a linear digital filter is defined to obey the . - - -
discrete convolution relation [ { . LF

1

=3
e |

TS

[o <]
Ye= Y hjXy-; (11.4)

J=-c0

where Yy = Y(kAt) and Xi_; = X|[(k-;)At. Equation (11.4)
represents a simple or nonrecursive digital filter operating on the data
X(nAt) and may be implemented by choosing a set of h,’s. Note that
for causality, h; = 0 for j < 0. However, if the data have been stored on . v v _ E
magnetic tape, one need not be constrained by causality. This freedom O SO S Ot O
is a fundamental difference between analeg and digital processing which
can be exploited to one's advantage at times. A filter of the type
represented by equation (11.4), applied in the frequency domain, has
already been seen in equation (9.29).
The frequency response of the filter is determined from the frequency
response function

-
P

[
Hw)= > hje bt (11.5)
Jjm=co
which can be seen to be a discrete approximation to equation (5.2)
utilizing equation (9.15).
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Chapter XI  Digital Filtering

H(w)

| =S
“at
Figure 45. Frequency response of three-point moving average.

One of the most common and useful digital filters is called the
moving average, which can be used for trend removal. For example,
for a three-point moving average, one would take A; = 0 for |j| > 1 to
yield the noncausal relation

Yi = ho1 Xiew1 + hoXi + h1 Xk (11.6)
The frequency response of the filter, from equation (11.5), is

H(w) = h_1€8 4 hg + hye~wdt
= hg + (hy + h—1) coswAt —i(h; — h_;) sinwdit

For a low-pass filter, the normalization
HO)=hp+h1+h_1 =1

is conventionally applied to ensure that a dc (constant) signal will pass
through the filter unchanged. Further, because digital filters operate
only in the range (0, */At) where /At is the Nyquist frequency, setting

H(rn/At) =hg—(hy + h_1)=0
ensures that the frequency response will be low at high frequencies.

Then, taking h; = h_; to make the frequency response function real
(i.e., the phase is zero) and solving these three relations yieids

hi=h_1 =

hg =

(IR
] -

Thus,
Hw) = %(l + coswAt)

which is a simple low-pass filter as shown in figure 45.
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X(t)

el
I‘M/ T

Figure 468. Time history with trend.

Moving-average (low-pass) filters are especially useful for removing
trends from data. Suppose, for exampie, that one had a finite-length
digital time history as shown (continuously) in figure 46. The data
in this figure are decidely nonstationary, and if this time history were
analyzed directly, it would have practically all of its power at very low
frequencies. A time history like this might be produced by the price
of a stock on a stock exchange (where the values X(t) would all be
positive) or the surface temperature of a spacecraft undergoing reentry.
for example.

Suppose one were interested in the high-frequency components
rather than the long-term trend in the data. If so, the data couid
be passed through a moving-average filter, that is,

1 1 1
Yi= 7 Xe+1 + 53Xk + 7 Xi—y

and Y'(t), again shown continuously, would appear as shown in figure 47.
Actually, to achieve this much smoothing, the data might need to be
passed through the filter several times in sequence. Such a series of filter
operations is equivalent to applying a higher order (i.e., more nonzero

h's) filter once. For example, two applications of the operation in
equation {11.6) would produce a frequency response function H%(w) =
Va (14 coswAt)? = ¥ + Y2 coswAt + Y8 cos 2wAt, which might also
be produced by one application of a five-point moving average.

After sufficient smoothing has been achieved, the Yk s could be
subtracted from the Xj's to yield

Zr=X,-Y;
where Z(t) would appear much more stationary, as shown in figure 48.
In this way, a much better estimate of the power at the higher

frequencies could be obtained. Note that this moving-average operation
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Chapter XI  Digital Filtering

Y(t)

/ T

Figure 47. Long-term trend in time history.

Z(t)

Figure 48. Detrended time history.

X h(t) > Y1)

| Delay [¢

Figure 49. Schematic of recursive filter.

is exactly equivalent to passing the input X(t) through a high-pass
moving-average filter with weights hg = Y2 and h_| = h) = -Va.

11.2 Recursive Filters

A much more computationally efficient filter is one where the output
is fed back into the input, as shown in figure 49.

In general, the delay (or skift if the independent variable is not
time) may be considered a bank of delays where the output is delayed
by various delay times before being fed back into the input. Such a filter
may, of course, be unstable (i.e., unbounded output) if the feedback is
too large, just as a microphone-amplifier-speaker system will begin to
screech if the gain is too high. Mathematically, it can be shown by an
argument in the complex plane that such a filter ts stable (i.e., bounded
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Introduction to Time Sertes Analysis

output) if and only if all the roots of the denominator of its transfer
function have positive imaginary parts.

First order recursive filter. Let
Ye =aYe_1 +8X: (11.7)

where o and 3 are real. This is called a first order recursive filter
because it uses only a single delay of time At. Equation (11.7) is an
example of a difference equation and may be solved by defining the

generating function
o

Y(z)= > V¥ (11.8)
k=—0c0
where z is complex. If equation (11.7) is multiplied by z* and summed
over all k, the equation

Y(2) = azY(2) + 6X(2)
results where X (z) is defined similarly to Y (z) in equation (11.8). Thus.

1 _ﬁazX(z) =Bl +az + (a2)? +-- ] X(2) (11.9)

assuming that |az| < 1. Thus, equating coefficients yields the solution
of equation (11.7),

Y(2)=

0
Ye=8)_ ol Xy, (11.10)
Jj=0
which can be seen to be bounded for arbitrary bounded input if and
only if |a| < 1, since otherwise the magnitude of the coefficients would
increase with 7.
Consider now the transfer function for this recursive filter. Suppose
one takes z = ¢~ WAt which satisfies |az] < 1 for a bounded output
filter. Then, equation (11.8) becomes

T
Y(w) = Z Yke'“"km
k=—o00

which except for the scale factor is the discrete Fourier transform
(eq. (9.15)) of the band limited process Y(t). Further, equation (11.9)
becomes

Y(w) = Hw)X(w)
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Chapter XI  Digital Fiitering

where

H(w) = g

is the transfer function of the first order recursive filter. The root of
the denominator of this transfer function is given by e=*&¢ = 1 /a or

w={g'71n(§_) (@ > 0)
Z+4hn(-3) (a<0)

and it can be seen that the condition |a| < 1 obtained for the
boundedness of the equation {11.10) is precisely that required to cause
the root of the denominator of the transfer function to have a positive
imaginary part as required by the stability criterion. This condition
also is intuitive since if it were not true, the output would be amplified
before being fed back.

Returning to equation (11.11), the squared magnitude of the transfer
function is

52

1+ a? - 2acoswAt (11.12)

|H(w)? =

and it can be seen that

2 . ——
HOP = 5

and 52
2 _
|H(m/At)|* = T+a?

Thus. for 0 < a < 1, the filter is low pass as shown in figure 50, and
for =1 < a < 0, the filter is high pass as shown in figure 51. In these
figures. the values of 3 have been chosen to make the gain unity at the
respective passband ends.

Second order recursive filter. More freedom in tailoring the shape
of the transfer function may be obtained with a second order recursive
filter:

Ye = a1 + aqYg + 08X, (11.13)

A similar analysis yields

Y(w) = 8

T 1 — a1e- WAL — goe-w2at

X(w)
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()|
Oo<a<1
1 B=1-a
1—a|
1:Fa - W
n
“&t

Figure 50. Low-pass first order recursive filter.

|H(co)| -1< a<0
i p=t+a
1+=0a
-a n: w
“At

Figure 51. High-pass first order recursive filter.

and the transfer function is seen to be

8

1 — aje- WAL _ gge-w2at

Hw) = (11.14)

For stability, the roots of

—-wat _ c—iu2At =0

1-age ag

must be examined. For convenience, defining s = 3t = 1/z and
multiplying by 82 yields

32-—a13—a2=0

with roots
ali\/a:f+4a—2
812 = 2 (11.13)
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Chapter XI  Digital Filtering

a2
1
-g -1 STABLE 1 2
x> REG|ION z_
7, N
o (-4

Figure 52. Stability diagram for second order recursive filter.

Therefore, the roots in terms of w are

-1 -1 .
Wiz == Ins; o= = (In[sy 2| + i61,2)
=22 Linjsyl
T At At tR2

where 6; 2 are the polar angles of the roots. Thus, an equivalent
condition for stability is
Is121 <1 (11.16)

Now, if a% + 4a2 < 0 in equation (11.15), then s; = s and
ls1,2] = (—a2)'/?

Thus, (-a3)'/? < 1, which implies that ag > —1. However, if
a"f + 402 > 0, then the roots are real and unequal. The stability
conditions on these roots lead to a; < 1 — ay and 1 + a; > a2 and
therefore to the stability diagram shown in figure 52. In summary, if
the parameters a; and a9 are chosen in the triangular region, the filter
is stable.

Returning to equation (11.14), the squared magnitude of the transfer
function is given by

B2
(1+ a% + a%) = 2a1(1 - as) coswAt — 2as cos 2wAL
(11.17)
By choosing various values of ay, ag, and 3, one can tailor this transfer
function to have desired characteristics. For example, if a9 = 0, then

|Hw)? =
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[H(w)
14 02<0
B=1+ oy
1+ 02
- 02
S i o ©
2At At

Figure 53. Band-pass recursive filter.

[HC¢)
1 G2>O
8'1 = 02
1; zz‘
2
+ + W
0 n n
2At At

Figure 54. Band-reject recursive filter.

the second order recursive filter reduces to the first order recursive filter
studied in the previous section. Thus, a; > 0 produces a low-pass filter
and a; < 0 produces a high-pass filter. However, if a; = 0, then

’

HO = oy = 1H(/A0)

while )
2_ B
|H(m/24t)¢ = T+a?

Thus, for a2 < 0, the filter is band pass as shown in figure 53, while for
az > 0, the filter is band reject as shown in figure 54. In these figures,
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Chapter XI  Digital Filtering

the values of 3 have again been chosen to make the gain unity in the

regions of interest.

By taking both @) and a3 to be nonzero within the stable region of
figure 52, various weighted combinations of high-pass, low-pass, band-
pass, and band-reject filters may be obtained. More sophisticated filters
with even more freedom in their shape may, of course, be developed. A
good refereace is Otnes and Enockson.!2
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Chapter XII
Special Topics

The field of time series analysis is vast and rapidly changing. In an
attempt to provide both complete and current coverage, this chapter
presents a potpourri of specialized topics and areas where research is
currently in progress.

12.1 The Kendall Series—A Test Case

In the development of computer codes to implement the various
estimation techniques discussed in this monograph, it is extremely
useful to have a benchmark time history for which the various statistical
moments are known theoretically. One particularly simple way of
generating such a time history is to use the Kendall series.

The Kendall series Y5, is generated by the recursive relation

Yn =alYn—1 +a2Yn—2+Xn (n =0, 1,2,...) (12-1)

where X, is a sequence to be specified later. This series has been
studied by Bartlett!! and can be seen to be a second order recursive
filter (eq. (11.13)) operating on the Xy,’s. Equation (12.1) may be solved
by a technique similar to that used in solving equation (11.7) to yield

(aﬂ+2 - sﬂ+2) "l"')(‘,?+l -

(s
Vo = —L 2 Y_, - 2 Y- 2 2 x
n 3 - 37 1 91 - 92 2+ n—k

where Y_, and Y_j are the initial conditions and the s's are the roots

a1 £ \/a? +4ay

2= 2

which are assumed distinct; that is, a% + 4aq # 0. The roots |3 2| are
less than unity for stability; thus, as n — oo, the solution approaches
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Introduction to Time Series Analysis

the steady-state solution

=] (3k+l - 3k+l)

Ya=)

k=0

Xn_ 12.2
31 — 99 n—k ( )

Now, suppose that the terms in the input sequence X, are indepen-
dent and identically distributed random variables such that

and

E {XnXn4m} = 0%m0

That is, the input random variables simulate a white noise random
process. Then, when steady state has been reached, the mean value of
Ynis

E{Ya}=0
and its autocorrelation is
Ry(r) = E{YnYn4r} = As] + Bsj (12.3)
where 5
A = axa]_ 2
(81 — 92)(1 — s182)(1 - s7)
and

B= -a?{ag
(31 = 92)(1 - 5192)(1 ~ s3)
Thus, Yy, is a weakly stationary random process. Further,

0 (r>0)
Ryx(r) = E{YnXn+r} =1 o2 (s} "=sl"" (12.4)
&2 (<o)
and X, and Y, are jointly weakly stationry.
In this case, both the power spectral density
1 = :
Sy(w) = 5 > Ry(r)eir
7= Q0
Y R S —
2T \1=sje~w ] ~gjew
+ E ( 1 + 1 1) (12.5)
2T \1 = gge~Ww ]| ~ ggew 2
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Chapter XII Spectal Topics
(taking At = 1) and cross power spectral density

1 = -
SYY =2_ Z Pl

2
.

T 21 [1 - (81 + 92)e™ + 3132672]

(12.6)

exist for jw| < 7. It might be noted that these relations are independent
of the distribution function for the random variables Xp,.

Most computer systems have standard softwa.re that generates white
noise data with mean zero, any desired variance a,(, and many different
distribution functions. Thus, one may choose values of a; and a3 (such
that the filter is stable according to fig. 52), use the initial conditions
Y. = Y_o = 0 (thus starting off with the steady-state solution), and
recursively compute equation (12.1) to yield a set of digital random
data of any desired length. Any program to analyze such data can then
be exercised and the results compared with the theoretical expressions
(12.3), {12.4), (12.5), and (12.6).

For example, figure 55 shows a comparison of the theoretical expres-
sion (12.3) for the autocorrelation with estimates of the autocorrelation
obtained from the classical lag product approach (eq. (9.18)).2! The
data used in the estimate shown in figure 55(a) were enerated by the
series in equation (12.1) with a; = 1.1, ag = -0.5, = 0.333, and a
uniform distribution of the random variables X. For ﬁgure 55(b), the
conditions were the same except that the random variables were nor-
mally distributed. Note that the autocorrelation estimates are nearly
the same in both cases and agree well with the theoretical expression
except near the lag value of 22, that is r = 22 At. This difference is
apparently due to spurious correlation induced by the white noise gen-
erator. Such spurious correlation is often seen as it is very difficult to
generate truly uncorrelated random variables.??

Figure 56 shows a similar comparison of power spectral density
estimates with the theoretical expression (12.5). These estimates
were obtained by transforming the autocorrelation estimates shown
in figure 55 according to the standard Blackman-Tukey technique
(eq. (9.19)) with a Hanning lag window. The number of degrees
of freedom was 1000 for this estimation technique. Note the good
agreement between the theoretical expression and the estimates in both
cases.

In figure 57, estimates of the magnitude and phase of the cross
power spectral density are compared w1th the theoretical expression
(12.6). The data utilized in this study?® were generated with the
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1.0 ¢ o Theoretical Iy o Theoretical
a Kendall series 2 Kendall series
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(a) Uniform distribution. (b) Normal distribution.

Figure 55. Comparison of theoretical and estimated autocorrelations.

° Theoretical = Theoretical
4 Kendall series & Kendall series

(a) Uniform distribution. (b) Normal distribution.
Figure 56. Comparison of theoretical and estimated power spectral densities.
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(a) Cross spectral magnitude.
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(b) Cross spectral phase.
Figure 57. Comparison of theoretical and estimated cross spectral densities.
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Figure 58. Comparison of theoretical and estimated cross correlations.

same parameters as before and normally distributed random variables.
However, the cross spectral density was estimated directly using the
finite Fourier transform technique (eq. (9.25)) with a Hanning data
window. This estimation technique had only 64 degrees of freedom.
Note that the cross spectral magnitude generally follows the trend of
the theoretical expression. However, there is much random variability
because of the small number of degrees of freedom. The cross spectral
phase estimates, however, agree exactly with the theoretical expression.

The cross correlation of these data was estimated by transforming
the cross spectral estimate shown in figure 57 using the finite Fourier
transform technique (eq. (9.42)) adapted for a cross correlation. This
estimate is compared in figure 58 with the theoretical expression (12.4).
Note that reasonably good agreement is achieved although there is again
a deviation near a lag of 22.

12.2 AR, MA, and ARMA Models

Results like that of the previous section, in which the passage
of a whito noise signal through a second order recursive filter leads
to an output random process whose statistical characteristics can be
determined analytically, have stimulated much interest in attempts to
model arbitrary random processes by the passage of white noise through
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various types of filters. Such modeling is the topic of considerable
current research.

The Kendall series considered in the previous section is a simple
example of an autoregressive (AR) model of a random process, that is,

Yan=a1Ya-1+a2Yn2+ - +apYnp+ X (12.7)

where X, is a white noise process. Equation (12.7) is called an
autoregressive model of order p. Similarly, a moving average (MA)
model is defined by

Yn = bOXn + b]_X -1 + b2Xn—2 + - +qun—q

where g is the order of the model. These models are special cases of
the more general relation

Yn =alYn_1 + a?Yn_z +- -+ apYn—p
+ bOXﬂ + leﬂ—l + -4+ qun—q (12-8)

which is called an autoregressive-moving-average (ARMA) model of
order (p.q)-

When a random process Y (t) may be represented by such a model, it
admits solution just as did the Kendall series and thus its moments are
well understood. For example, multiplying equation (12.8) by e*wnat
and summing yields

_ by +biz+ b2 + -+ be2?

Y =
@) l-alz-agzz-----apzp

where z = ¢~*4¢ and Y(w) and X(w) are defined by equation (11.8).
Thus, X(t) is the output of a linear filter with frequency response
function H(w).

Assume that H(w) is a stable filter and note that the input X(t) is
a weakly stationary random process with

E{Xn} =0

and
E{XnXn+m} = ",2\{5771.0

Then, as n — oo, Y (t) is a weakly stationary random process with
E{Y(t)} =0
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and
Sy () = |H(w)*Sx(w) = ok |H(w)?

Thus, such models can represent any mean zero random process whose
power spectral density can be expressed as

2
_ o |bo+brz 4222 + - + b2t
SY(U)—UX 1_012_4222_..._%2P

in which p + q + 2 arbitrary constants are available to match the power
spectral density.

This result has led to much interest in representing real data
sequences in terms of such modeis. Many different techniques have been
developed for choosing an appropriate set of a’s and &’s. For example,
for an AR model, multiplying equation (12.7) by Y,—, for some integer
T greater than or equal to 0, taking expectation, and using the fact that
Ry (-r1) = Ry (r) yields

Ry(r) = ay1Ry(r-1)+agRy (r=2) +- - +apRy (r—p) +0%érg (12.9)

since E{X,Yn} = E{X2} = "%{ This recursive equation may be used
to extrapolate the autocorrelation from known values for an AR process.
However, for the purpose of estimating the coefficients, note that if
equation (12.9) is evaluated for r = 1,2,. .., p, the matrix equation

Ry (0) Ry(1) --+ Ry(p-1)] ey Ry (1)
Ry (1) Ry(0) -+ Ry(p-2){ |a _ Ry (2)
Ry(p-1) Ry(p=2) ... Ry(0) | lap)l Ry

results. Thus, if estimates i?y (jAt)for j =0,1,2,...,p of the autocor-
relation of a random process are obtained from equation (9.18), time
may be considered to be nondimensionalized by At and appropriate co-
efficients for representing that process by an AR model can be obtained
by solving the matrix equation.

123 Data Adaptive Spectral Estimation Techniques

Spectral estimation techniques such as the Blackman-Tukey or
finite Fourier transform are said to be nonadaptive in the sense that
the characteristics of these techniques are the same for all sets of
data. That is, the algorithms for their implementation treat all
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ﬁx( T)

\ P extrapolation
" 7 T

Figure 59. Extrapolation of autocorrelation.

sets of data in exactly the same way. Recently, two new spectral
estimation techniques, the maximum entropy method (MEM) and
maximum likelihood method (MLM) have been developed. These
methods are said to be adaptive since their design is data dependent.
The characteristics of these techniques adapt to the particular data
being analyzed. Such techniques allow much higher resolution than the
nonadaptive techniques and are particularly useful when resolution is
limited by short data lengths.

Maximum entropy method (MEM). This technique was introduced
by Burg.2* The basic idea is to choose as the spectral estimate the
power spectral density of the most random (i.e., mazimum entropy)
time series whose autocorrelation agrees with the known values. It can
be shown that this amounts to extrapolating the autocorrelation to
larger lag values than can be estimated from data of length T as shown
in figure 59. The extrapolation is done in such a way that the entropy is
maximized; that is, as little information as possible is added. Since no
lag window exists in this case, the resolution is theoretically unbounded
and the estimate is unbiased.

Suppose that discrete equally spaced data X(ndt) for n =
1,2,..., N from a stationary random process X(t) exists. Shannon 5
has defined the entropy of the random process as

Hy=- /_ Z [x(x) In [c2N jx(x)] dx (12.10)

where fx(x) = fx(z1,22,...,zN; Ot 248, ..., NAt) is the Nth order
density function of the random process .X(t) and c is an arbitrary
constant.
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Now, suppose that X(¢) is a normal random process with mean zero
(see chapter III). Then

m=1n=l

o N
fx(x) = @n) VAT P ( 4] > Z lAlmnXan)

where X;n = X(mAt) and |A| is the determinant and |A|mp is the mnth
cofactor of the matrix of correlations,

Rx(0) Rx(At) .. Rx[(N-1)A¢
- Rx(At) Rx(O) e Rx[(N—-?)At]
Rx[(N-1)Af) Rx[(N-2)Af ...  Rx(0)

In this case, for proper choice of the constant ¢,

Hy = 31n|A|
As N — oo, Hy — oo. However, it is possible to define the entropy
rate to be
. Hy 1 /N
h= —_— = - /
Nh-r.%o N — o0 2 ln]A|

Further, since the autocorrelation depends on the power spectral den-
sity, it can be shown that

hm AN = exp{ 1 /w ln[27er(w)]dw}
2we

—lWwe

where w, = m/At is the Nyquist frequency and it has been assumed
that Sx(w) =0 for jw| > we. Thus,

=L@y, L[
h=3ln ( )+4wc . In[27 Sy (w)] de

Recall that
’ At
Sx(w) = 27r Z Ry (mAt) e~iwm

m= -0
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and thus

1 We o0 .
h= —/ | T Rx(mat)ewmat| gy (12.11)
4“'}6 —we

m=-00

From the data, estimates of the autocorrelation Ry(mAt) for m =
0,1,2,...,N =1 can be obtained. The desire is to extrapolate these
values to obtain other estimates Ry(mAt) for m > N in such a way
that the entropy rate (eq. (12.11)) is maximized. Thus

oh

—_— = (m>N)
dRx(mAt)
or
We e—l.UﬂAt
[ = dw =0 (12.12)
—wec Z: Rx(mAt) e—twwmdit
m=-—00
Thus, if the new unbiased estimate of the spectral density is defined
* At = A
& - = e —twmdAt
Sx(w) = o mgm Ry(mAt)e

in terms of the estimated and extrapolated autocorrelation values, then
equation (12.12) may be solved to yield

N-=-1 N
3 amRx(mAt)
Sx(w) = —==0 = > (12.13)
2(JC l+ z ame-iumAt
m=]
where
g =41 (m=0)
m = -hm (m=1,2,...,N)

and the h’s are given by the solution of the matrix equation

[ &
NEE :
vl L[V - )2
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H., (W)
XtW—— P or —x 1)

hag(®)

Figure 60. MLM filter.

Maximum likelihood method (MLM). The maximum likelihood
method was introduced by Capon.?8 The basic idea is to develop a
minimum variance unbiased estimator of the spectral components of the
time history by designing a filter at each particular frequency that passes
that frequency undistorted and rejects all other frequencies in an optimal

manner.

Consider a record of length T of a stationary random process .X(¢t).
It is desired to estimate the power spectral density of this random
process at a particular frequency wg. This can be done by designing an
optimal causal filter for the particular frequency as shown in figure 60.
Note that the filter impulse response need not be restricted to be real. In
this case, the output Xg(t) can also be complex. The spectral estimate
is then the power output by this filter:

Sx(wo) = |Xo(t)}
where if the impulse response has duration T,
T,
Xolt) = /0 hug () X (t-a)da (12.14)
is the time history passed by the filter.

In order for the filter to be optimal, it should have unit gain at the
frequency of interest, that is,

Tr .
Hug(wo) = hug (t) e~ dt =1
0

Further, in order to reject other frequencies in an optimal manner, the
filter should minimize the output power when the input process has an
autocorrelation that agrees with the known data over the range (=T, T).
By equation (12.14), the average output power of the filter is

Tf Tr
E{1xoF) = [ doy [ doshug(@1)hi(02) Rx(az—a1)
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Minimizing this expression subject to the constraint that H ,(wp) =1
yields

huo (T1)h%g (72) = E {|Xo(1)1?} Q(r1, ) (12.15)
where

[)Tr Q(t, ") Rx(r—t)dr = 6(t-t)

Now, multiply equation (12.15) by e~*0(71=72) and integrate over 7,
and m to obtain

Tr Tf .
E{1%o(®)} [ dry [ dra Q(ry, m)eninm)
0 0
T, . Tv .
= [ dn hag(m) em0n [ dmy hg(m) o =1
0

Thus, since the spectral estimate is taken to be the output power,

. T, T _ -1
sx(wo)=[fo dn A dr Q(1,m) e-wo(fm)} (12.16)

where Q(¢,7) may be estimated from the autocorrelation estimate by

/0 T Q(t, ") Rx(r=t) dr = 6(t—t")

for t > 0 and ¢’ < T. For discrete data, this can again be written as a
matrix equation.

Although these techniques provide higher resolution, they do so at
the cost of increased computational effort. Basically, an additional
matrix equation must be solved. Other techniques could, of course,
be developed. Recall that

o o] .
Rx(r) = / Sx(w) €7 du
)
The data Rx(nAt) for n = 0,1,2,...,N — 1 provide a set of N
constraints oo
Rx(nAt) = / Sxc(w) emAt g,
-0

on the possible form of the power spectral density. Many methods for
estimating Sy (w) within these constraints might be devised.
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12.4 Spectral Analysis of Randomly Sampled Signals

All the digital analysis that has been covered so far in this mono-
graph has assumed that the time history is sampled at equal intervals
At. However, in recent years, certain applications have stimulated inter-
est in data sampled at random intervals. For example, the laser Doppler
anemometry technique, which is used to measure velocity components
in flows, amounts to setting up a control volume within the flow by
crossing laser beams from different angles. The flow is then seeded
with some particulates and a velocity measurement is obtained when-
ever a particle happens to pass through the control volume. Spectral
estimates obtained from such data are comparatively free from aliasing
but have higher variability than corresponding estimates from equally
spaced data. This is because the unequally spaced sample times elimi-
nate the ambiguity associated with equally spaced samples that leads
to aliasing, while the uncertainty of the random sample times leads to
further uncertainty in the estimate.

In both methods to be developed, the sampling times are assumed
to be Poisson distributed® such that

P{Sample in time interval (t,t + At)} = A At + o( At)

where ) is the average rate at which samples occur and o(At) indicates
a term that approaches zero faster than At does as At — 0. In the
absence of any better information, this model is preferred in the sense
that it fits many real world phenomena where events occur randomly
in time.

Method 1. This method was developed by Gaster and Roberts?7 in
1975. Consider a stationary random process X(t) that is sampled at
Poisson distributed random times ¢; for i = 1,2, ... and define

C(n) = E{X(t;)X(tiyn)}

Note that this is similar to an autocorrelation, being the expected
value of the product of a sample with another sample n samples later.
However, here the expectation is not only over the ensemble comprising
the random process X(t) but also over the random sampling times ¢,.
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From the concept of conditional probability,’

Cln) = [0 = E(X(8)X (bipn)ltian = ti = 7} P {tisn — & = 7} dr

- /0°° Rx(r)pn(r) dr (12.17)

where E{|} is the conditional expectation and pn(7) is the probability
density function for the time interval between the :th and (i +n)th
samples

Anqn—1 e—)f
pn(7) = T (r20n21) (12.18)
which is called the gamma density function.?

Recall that

oo :
Rx(r) = Sy (w)e“T dw

-0

Then equation (12.17) may be written
[= <]
Cm) = [ Sx(w)én(w)du (12.19)
-0

where

on(w) = /:o pn(r) €™ dr = (/\ —,\iw)n

Thus, equation (12.19) becomes the integral equation

C(n) =/_°; Sx(w) (A_’\iu)n dw (12.20)

for the power spectral density Sy (w).

Integral equation {12.20) has been solved for Sy (w) by Shapiro and
Silverman.?® The unique solution is

Sx(@) == Y b(n)¥n(w) (12:21)

n=1
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where
Un(w) = Re [-\/27(—(‘—"—;’{%1),}1}
b(n) = \/_Z(z ( ) (k+1)
and

(n) - n!
k ki(n — k)!
is the binomial coefficient.
In practice, with N data points X(¢;) for ¢t = 1,2,...,.V from a
single sample function, the function C(n) is estimated by

N-n
Cn) = N 3 X(t) X (tin) (12.22)

t=]

which can be seen to be an unbiased estimate. This estimate is then
used in equation (12.21) to yield the spectral estimate Sy (w).

Method 2. In a later analysis (1977), Gaster and Roberts?®
estimated the spectral density more directly. Recall the discrete Fourier
transform spectral estimate (eq. (7.15)):

Sx(w) = Ws|Xp(w)|® (12.23)

where

Xp(w) = 2iw /_ Z d(6)X(¢) e~ ™t gt

T .
= 2% /0 d(8) X () e~ dt (12.24)

Now, if N randomly sampled data points X(¢;) fori = 1,2,..., N oc-
cur in the interval (0, T'), an approximation to integral equation (12.24)
may be obtained from

1 N
72 DX (t) e At (12.25)
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where At; = t; — t;_, and to = 0. Further, if samples occur at the
average sampling rate A, then

At =

>e

and equation (12.25) may be further approximated by

N 3
Xp(w) = 5y 3 d(t)X(6) (12.26)
=1

This expression could be used in equation (12.23) to provide the spectral
estimate. However, upon doing so, Gaster and Roberts found this
estimate to be biased by a false constant shift, which they removed
by the use of the estimate

174
Sx(w) = g5 [

1=1

N 2 N
D d(t)X(t) e -Zd"’(tf)xz(t,-)] (12.27)
i=1

Although this technique is computationally more efficient than
method 1, more data are necessary to achieve the same level of
accuracy.

12.5 Cepstrum Analysis

In the past few years, the use of cepstrum analysis3 has come into

. prominence. The name is derived by inverting the first four letters in

spectrum. This type of analysis is particularly useful for time histories

involving a signal that is delayed and then added to itself, such as an

echo, or for noise transmission by different paths, such as airborne and

structure-borne sound. If X(t) is a stationary random process, then its
power cepstrum is defined by

Cplr) = /_ Z In[Sx(w)] €47 duv (12.28)

which is the Fourier integral transform of the natural logarithm of the
power spectral density. Since the power spectral density is real and an
even function of frequency, the power cepstrum can be seen to be real
and an even function of the variable . The reason for the use of the
logarithm here is that any product term in the power spectral density
appears as a summation in the cepstrum.

The definition in equation (12.28) assumes that the power spectral
density is never zero. When working with digital data, equation (12.28)
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is approximated by the integral from —w, to wc, where w, is the Nvquist
frequency. For real world random data, the occurrence of an identically
zero value in this range is unlikely.

Although the idea of inverting the first four letters in spectrum
may have been a good one, this idea has been carried too far in
cepstrum analysis. For example, the variable r in equation (12.28)
is called “quefrency,” paraphrasing frequency, which is unfortunate
since 7 is a timelike variable. Clearly, if it were not for the logarithm,
equation (12.28) would be just the autocorrelation and = would be the
lag time. Other examples of this type of paraphrastic excess will be
noted.

It is also possible to define the complez cepstrum to be

Ce(r) = [ Wn[X(w)] e du (12.29)

-00

where X(w) is the Fourier integral transform of X(¢):
1 0 . .
X =g [ Xye et dr = | X ()l (12.30)
27 J—oo

Note that, for X{(t) real,

X(—w) = X*(w)
and thus

| X(w)| = |X(-w)l

and
o(w) = —o(-w)

Thus, from equation (12.30)

Ce(r) = /o:o[lnIX(w)I + io(w)](coswr + isinwr) dw

= /oo [In | X (w){ coswr — ¢(w) sin wr| duw

+i / % I 1 X(w)] sinwr + 6(w) coswr] du

The second integral vanishes since it is an odd function. Thus. the
complex cepstrum is real! However, it is not an even function of r.
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Source
S(t) Q Receiver
P(t)

Figure 81. Sound source above flat surface.

A third type of cepstrum, the real cepstrum,

Cr(r) = / * In | X (w)2e™T dw (12.31)

-00

is both real and an even function of r and may prove to be even more
convenient for transient functions.

As an example of the use of this type of analysis, consider the
geometry shown in figure 61. An acoustic source is producing a
stationary acoustic signal S(t), which is being received by a microphone.
Sound can reach the microphone by the direct path of length ¢; or by
echoing off the surface, resulting in a path length of £3+¢3. The pressure
signal recorded by the microphone is thus

_St=tjo)  Slt-(t2+8)/d
£ b+ {3

P(t) (12.32)

where c is the speed of sound and « is the fraction of the incoming
energy that is reflected by the surface. If the reflecting surface was not
present, the microphone would record the signal

_St-t/9)

7 (12.33)

Q(t)

which is equivalent to choosing a = 0 in equation (12.32).
From equation (12.32), the autocorrelation of the microphone signal
is

Rp(r) = E{P(t)P(t + 7)}
= BRg(r) + 4[Rs(r — 1) + Rs(r + )] (12.34)
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RP(T)

YRS(T +7) YR(T—T9)

o o
Figure 62. Autocorrelation of microphone signal.

where Rg(7) is the autocorrelation of the source signal,

ﬂ-1+ 02
T8 (ta+ )2

o —
6l +&3)

and
lo 4+ 8q~¢
2 3 1

[~

Thus, the autocorrelation of the microphone signal appears as the sum
of the three curves shown in figure 62, and separating the directly
radiated sound from the echo would be very difficult because of the
distributed nature of the autocorrelation Rg(7).

However, the power spectral density of the microphone signal is,
from equation (12.34),

Sp(w) = % /_: Rp(r)e ™ dr = [B + 2ycoswry|Sg(w) (12.35)

where Sg(w) is the power spectral density of the source signal S(t).
Thus, the source and receiver signals are related by the standard linear
system relation

Sp(w) = |H(w)|*Ss(w)

where the squared frequency response function of the equivalent linear
filter is

|H(w)|? = 8 + 2ycoswry
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Chapter XII Special Topics

Thus, if the propagation paths and reflection coefficient were known,
the source spectrum could be recovered by

_ Sp(w)
Sslw) = 3+ 2ycoswn

Generally, the propagation paths and reflection coefficient(s) are not
known, in which case equation (12.35) may be written

Sp(w) = BSg(w) (1 + %;—7- cosum)
Thus,

InSp(w) =InSg(w) + m(ﬂlf) +In (1 + Eﬁl coswfo)

where Sg(w) = Ss(w) /Ef is the power spectral density of the echo-free
signal (eq. (12.33)), and the power cepstrum of the microphone signal
is

o0 )
Cp(r) = / In(Sp(w)] ¥ dw = / In[Sq(w)] €' dw
-0

-00
Q0 o0
+1nge2 T du + ln l+?-1cdowro T dw (12.36
1

-0 -0 a

Here, the first integral is the power cepstrum of the echo-free signal and
the second is 2wé(7) by equation (2.6). Further, for |z| < 1

z3
ln(1+r)-z—?+?-~--

Since
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Introduction to Time Series Analysis

whose magnitude is less than unity, the third integral in equa-
tion (12.36) may be written

o 2_'7 W
In{1l+ —coswry ) e dw
-0 B
) . 2 roo .
=2—7/ coswme“‘"dw—-l-(-z:’-) / cos® wmp e duw + - -
ﬁ -Q0 B -0
r

= (%) #totr =) + sr+m)
1
:

2 .
(%’-) w[26(7) + 6(r=219) + 6(r+270)] + - - -

upon noting that cos?z = 1/2(1 + cos 2z) and using equation (4.7).
Thus, the power cepstrum of the microphone signal is

2
Cp(r) =Cg(r)+r [2lnﬂl§ - % (%) - ] 6(r)

+r [(%’) + - ] [6(r—m) + 6(r+m)]

2
-w[é (361) +] (6(r—2r0) + 6(r+2m)] +--- (12.37)

where Cg(r) is the power cepstrum of the echo-free signal. Further. it
can be shown that the coefficient of the §(7) term is identically zero.
Thus, the power cepstrum is as shown in figure 63, where the echo
shows up as delta functions (called “rahmonics”) at multiples of the
delay time 7.

This cepstrum can theoretically be readily filtered (or “liftered™) by
interpolating the continuous function at the positions where the delta
functions occur leaving only the echo-free receiver cepstrum. The echo-
free receiver spectrum is then recovered by inverse Fourier transforming,
that is,

(e <] .
SQ(w) = exp :Tl; /;oo Co(r)e™Tdr (12.38)

It should be mentioned, however, that programmiing the liftering oper-
ation may be difficult, particularly when more than one echo is present.

12.6 Zoom FFT

In recent years, the manufacturers of stand-alone syectral analyz-
ers have developed a new feature called the zoom FFT,3! which allows
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CP(T)
T /_CQ( T)T
st + * * $ T
=37 T 1) 37,

Figure 63. Power cepstrum of microphone signal.

one to greatly increase the resolution in a small portion of the spec-
trum. However, although the technique involves clever hardware im-
plementation, it does not violate the fundamental resolution constraint
(eq. {7.33)) that

2r
> —
8wl 2 3

where T is the length of the record.
The method involves two assumptions:

1. That data storage is limited by the memory of the spectral analyzer
to [V real data points
2. That access to additional data is essentially unlimited

Consider N data points z(nAt) forn =0,1,2,...,N — 1. The FFT of

these data is
N-1

X(kAw) = > z(nAt) e~ 2mkn/N (12.39)

n=0

where Aw = 2r/N At. Thus, the bandwidth of the FFT must satisfy
the fundamental constraint

2
|Au| At = N

If NV is fixed by memory restrictions, the only way to increase the reso-
lution (i.e., reduce Aw) is to increase At. However, increasing At would
lower the Nyquist frequency and introduce aliasing into the spectral es-
timate. The way out of this dilemma is to use the old technique that
electrical engineers call heterodyning. That is, multiply the signal by
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S

interesting Region

Aw28w  RAw UAw N/28w
Figure 64. Interesting region in spectral estimate.

another signal to generate sum and difference frequencies, filter out the
sum frequencies, and analyze only the difference frequencies. These fre-
quencies are low and can thus be sampled at a much larger At without
introducing aliasing. However, since the record length is T = V At, the
record length must increase in order to obtain the same number of data
points at the larger At.

The implementation of the zoom FFT technique involves the follow-
ing steps. From the FFT (eq. (12.39)) of the original /V data points. the
spectral density may be estimated in the region 0 < w < w, = V/2 Aw
as shown in figure 64, where Aw = 27r/NAt. Suppose that the range
we = L Aw < w < wy = uAw is of particular interest. Then, let

_t+u

T2
and multiply the original data X(nAt) by the complex exponential
e~127mn/N ¢4 obtain the series of complex data points

2(nAt) = e 2 /N g (n At)

The FFT of this new series would be

N-1
Z(kAw) = Y z(nAt)e~t2mkn/N
n=0
N-1
= z z(nAt)e-i2rr(k+m)n/N
n=0

= X[(k + m)Aw]

Thus, the power in the random process Z(t) at the frequency of
zero is precisely the power in the random process X(t) at the frequency
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|X()| |2(w)|

-
L 4

| .

Oyope  Qwmiowe N/2Aw
Figure 65. Change in frequency origin.
()|

(€-m)aw (t-mAaw
Figure 66. Low-pass zoom filter.

m Aw and the frequency origin has effectively been moved as shown in
figure 65.

Then, suppose that the random process Z(t) is passed through a low-
pass digital filter with frequency response function as shown in figure 66
to yield a new random process Y (t) containing only low frequencies such
that |w| < (¢ — m)Aw. Since Y(t) contains only low frequencies, the
Nyquist criterion (eq. (9.7)) then says that the data are being sampled
more frequently than necessary. In fact, one may now use a new At
given by

T N
Atpew = G mae ~ a—m) At (12.40)
For example, if V = 128 and u — m = 2, then Atpew = 32 At and the
sazn)e information can be obtained by keeping only every 32nd value of
Y(t).

Suppose one keeps only every Atnew data point and still fills up the
memory. The memory now holds N/2 complex data points y(nAtpew)
forn=0,1,2,...,N/2 - 1. The FFT of these data

N/2-1
Y (kQunew) = D y(nltnew) e 2mkn/(N/2)

n=0
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Introduction to Time Series Analysis

then yields a spectral estimate only in the region of interest with
resolution
2r 4(u - m)

= (N/2)Otaew . N (12.41)

AUJ new -

Thus, for the same example, N = 128 and (u — m) = 2,

Aw
Aunew = T&

and the resolution is increased by a factor of 16. However, the total
record length required to do this is

N N
?Atnew = 4—(1‘—:—”7)-(N At)

or 16 times more data for the example cited.

12.7 Digital Spectral Analysis of Periodic Signals

Often one is interested in analyzing a periodic signal, which may
or may not be contaminated by random noise. For example, the noise
produced by a helicopter is largely due to the periodic motion of the
rotor. However, there are also other sources of helicopter noise that are
more random. In this case, many of the problems seen in the analysis
of random data, as well as some new ones, arise.

Recall that if f(¢) is a periodic signal with period p, then it may be
represented by the Fourier series (eq. (2.4))

o0
f(t)= 070 Z an COSwnt + bp sinwnt)
0

Z et (12.42)

where wy, = 27n/p are harmonics of the fundamental radian frequency
wy = 27/p of the signal. The Fourier integral transform of this signal

is (eq. (2.7))
2 Fpb(w—wn)

n=-0o0
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[Fal

4 T
— w
W3-y 0 Wy Wy Wy

Figure 67. Amplitude spectrum of periodic signal.

Such harmonic analyses are ordinarily represented by the amplitude
spectrum as shown in figure 67. In terms of the more familiar a’s and

b’s,
Va2 + b2
|Fa| = —5—

Note that this is a much different representation from a power spectral
density since |Fn|2is the finite power in the signal at the discrete fre-
quency wn. One is ordinarily interested in obtaining accurate estimates
of these amplitudes |Fp| and the frequencies wn.

For the digital analysis of such data, it might intuitively be expected
that one ought to analyze data of length

T=vp (12.43)

where v is an integer. That is, the data length ought to be some whole
number of periods of the signal. Equation (12.43) can, in fact, be shown
to be true mathematically.

Suppose that the periodic signal is sampled at equal intervals At
yielding data f(jAt) for j =0,1,2,...,N =1 for a total sample length
of T = N At. The finite Fourier transform of this signal is

N-1
FlkAw) = 3 f(jaL) e i2mki/N (12.44)
7=0

which is evaluated at the frequencies

uk=kAu=2—;-,E (k=0,1,2,...,N/2)

The signal (eq. (12.42)) has power occurring at the frequencies
wn = 27n/p. Thus, the frequencies at which equation (12.44) is
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evaluated may not be the frequencies at which equation (12.42) has
power! For n fixed, there is a k such that w; = wy if and only if

2rk _ 2mn
T p
or T_E

If one wishes this to be true for all » such that wn, is less than the
Nyquist frequency, we = m/At, then

T=vp
where v is an integer and the k corresponding to a given n is
k=uvn

Thus, the data length T must be some integer number of periods of the
signal.

Unfortunately, it is not always possible to satisfy the criterion in
equation (12.43) that the data length be some integer number of periods
because either (1) The period is not known a priori or (2) use of the
FFT requiring NV = 2¢ does not make it convenient.

Then, what happens if one proceeds with the analysis when the
frequencies at which the discrete Fourier transform is evaluated are not
equal to the frequencies at which the periodic signal has power? This
case has been studied extensively by Burgess.

Suppose T = vp where v is not an integer and data f(jAt) for
J=0,1,2,...,N -1 from a periodic process f(t) exist. The discrete
Fourier transform of these data is

N-1
FkAw) = Y f(jAt)e™i2mki/N
J=0
N-1 oo
= Z Z Fnetoniat—i2nkj/N
j=0 n=-—o00
oo N-1

=Y Ry [ci(unAt—%rk/N)]j

n=—o0 J=0

where ok 2
b s T
wnAt——N—_W(nu—k)
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f(t)
A
5 Fp/z 0 P72 |p t
— -A | S
Figure 68. Square wave of amplitude A.
since T = N At = vp. Thus, defining
N-1_ 4
wn() = 3 [e2n—/N]?
j=0
1 — eter(nv—k)
(12.45)

= 1 = e2n(no—k)/N

and noting that division by N is necessary for equation (12.44) to
approximate equation (2.5), the estimated Fourier coefficients are

;. FlkAw) 1 =
Fo=—f—= N,.;.oopnwk"(u) (12.46)

which is a weighted sum of all the Fourier coefficients with respect
to the very complicated weighting function (eq. (12.45)). Physically,
Wgn (V) represents a transfer of that power which in the periodic signal
would appear at the frequency wn = 27n/p to the estimated Fourier
coefficient at the frequency w, = 27k/T. This phenomenon is called
leakage and can result in substantial errors in both the amplitude and
the frequency of the Fourier coefficients, basically dependent on how
close nv ever gets to k.

Periodic signals may also have problems with aliasing, if they contain
power at frequencies higher than the Nyquist frequency, just as in
random signals. In fact, aliasing is much more evident in periodic
signals. A simple example that can be readily analyzed is to consider
a square wave of amplitude A as shown in figure 68. The Fourier
coefficients are given by equation (2.5):
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P .
=1 / f(2) e=mt gy
PJo

=4 P2 e~ twnt gp é/p e"twnt gy
PJo P Jp/2

A, .
= —{(-1)"-1]

Now, suppose that the signal is sampled at equal intervals At for
one period, that is, NAt = p, and that N is even. Then. by
equation (12.44), noting that f(0) = f(p/2) = 0 because of the jump

discontinuity,
N-1 o
F(kdw) = ) f(jAt)e"27ki/N
J=0
N/2-1 . N-1 ‘
=4A Z (e-i’brlc/N)J_A Z (e—i21rlc/N)J
7=0 j=N/2+1
= {A[(~1)* - 1] cot %‘-

Thus, the approximate Fourier coefficients are

ﬁ'ﬂ:”—n;‘i):%[( 1)"-1]cot?:.—‘jc
_iA n N & 22%|By| 7ny2k—-1
=yl=0-1 [Z? 'kz,:l (2k)! (F) ]

upon expansion of the cotangent. Here B,, is a Bernoulli number.
Note that the first term is the exact Fourier coefficient and the sum
represents aliased terms. Thus, periodic signals must also be filtered to
avoid aliasing.

12.8 Spectral Analysis of Nonstationary Random Processes

Practically all the analysis discussed thus far in this monograph
has assumed that the random process of interest is at least weakly
stationary. When this is not true, two major problems arise:

1. Since the statistics of the random process vary with time, time
averages cannot be used to reduce variability. Thus, an ensemble
of sample functions must be collected, analyzed, and averaged.
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Chapter XII Special Topics

2. Since second order moments depend on two variables instead of one,
interpretation is more difficult.

For example, the autocorrelation of a nonstationary random process
X(t), Rx(t1,t2), depends on two variables ¢; and t2. The corresponding
power spectral density may be defined as

Sx( =L mdt codtR £ to) etwrti—wat2)
x(wi,w2) = =3 LY x(t1.t2)e

= E{X"(w1)X(w2)} (12.47)

where
X(w) = — / ® X(t) et dt
2% J—co

The autocorrelation may then be recovered by the inversion relation:
[o,9} Qo .
Ryt t) = [ dun [ dunSx(epun)ertiatd (12.48)
-00 -00
However, the power in the process at time ¢t is
oo o0 .
B0 = Rx(t,0) = [ dur [ dunSeln,up)ermen)
-—00 -—Q0

Thus, the power spectral density (eq. (12.47)) does not admit a simple
interpretation in terms of power per unit frequency. If the random
process were stationary, then Sx(wj,w2) = Sx(w1)é(we —wy). Thus,
it has been suggested®® that the spread of the values of the spectrum
Sx(wy,wq) about the line w; = wy is a measure of the nonstationarity
of the random process. One virtue of the definition in equation (12.47)
is that if X(¢) is input to a linear system, the power spectral density of
the output Y'(¢) is given by

Sy (w1, w2) = H"(w1)H (w2)Sx (w1, w2)
However, although this definition is relatively straightforward, it has

proven to be of limited practical use.
A more useful definition is accomplished by introducing the variables

T=1ly -1
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Introduction to Time Series Analysis

called the mean time and time difference. Then, the autocorrelation
may be written

Rx(t1,t2) = Rx(t—7/2,t+1/2)

and one can define the time varying power spectral density as

00 . - ‘
Sx(fw) = = / Rx(F~7/2,5+7/2) e~ dr (12.49)
27 J—oo
with inverse
- - (=2 - .
Rx(i-7/2,i+7/2) = / Sx(F,w) €T dw (12.50)
-0

Although this definition does not satisfy a simple relation for a linear
system, the power is

E(X*0)} = Rx(®]) = [ : Sx(Fw) du

Thus, S(¢,w) admits interpretation as the power per unit frequency in
the signal at time t. This definition has proven useful, probably being
most widely used in the field of voice analysis and identification.

A class of nonstationary random processes that have been fairly
widely studied are called “pseudostationary” random processes. Here

Y(t) = A(t)X(t) (12.51)

where X(t) is a stationary random process and A(t) is a deterministic
modulation signal that is assumed to vary much more slowly than
X(t). For example, figure 69 presents the acoustic pressure time history
measured by a stationary microphone as an aircraft flies over it. Such
data can be represented by equation (12.51), although the Doppler shift
in frequency inherent in this measurement technique must also be taken
into account. For processes that can be described by equation (12.51).

Ry (i-1/2,i+7/2) = E{Y ({-7/2)Y (i+7/2)}
= A(t-1/2)A(t+7/2) E{X(t-7/2) X (t+7/2)}
~ A¥(?)Rx(r)

and thus . .
Sy (t,w) = A%(£)Sx(w)
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YL SERL X2
doesgp @ vrgng

Figure 69. Acoustic pressure time history produced by aircraft flyover.

X(t)

Region Il!l‘ I ‘ II I I1 I I

Figure 70. Identifiably nonstationary signal.

where Sy (w) is the ordinary power spectral density of X(t).

Another type of nonstationary signal that seems to occur fairly
frequently is shown in figure 70. This type might be called identifiably
nonstationary. In such signals, the time history consists of two (or
more) regions where clearly different phenomena are occurring. Such a
record might be produced, for example, by a velocity sensor mounted
on an aircraft flying in and out of thunderstorms, by a microphone
measuring the noise level inside a train traversing sections of smooth
and rough track, or by a seismometer recording periods of more and less
seismic activity. For such records, it seems reasonable to break the time
history into blocks corresponding to the different regions and analyze
the records in the blocks from each region as if they were produced by
a single stationary random process.

While such an approach undoubtably produces useful information,
it requires much engineering judgment. First, the various regions must
be identified and the break points between them determined. Then,
the reasonability of treating the sections of a given region as stationary
must be evaluated. For this purpose, the test for stationarity given in
chapter VI is useful. Sometimes the means may not pass such a test,
although the variances do. In this case, the mean of each block may be
subtracted from the data in that block before analysis. Other times,
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Introduction to Time Series Analysis

detrending, as was discussed in chapter XI, may have to be applied to
each individual block before the stationarity test is satisfied.

Assuming satisfactory passage (which again requires engineering
judgment), spectral estimates for each block can then be computed and
averaged together, just as in block averaging, to reduce the statistical
variability. However, the blocks may be so short that the needed
resolution cannot be obtained with standard techniques. In this case,
it may be necessary to apply techniques such as the maximum entropy
or maximum likelihood methods.

In analyzing such data, one should use good engineering judgment at
every step along the way and should always be mindful in interpreting
the final resuits that many assumptions have gone into the analysis.

A way in which one can make any random process appear more
stationary is to “normalize” it. Suppose X (t) is a nonstationary random
process with mean mx(t) and variance 0%(t). Then, the new random
process
X(t) - mx(t)

ox(t)

is such that E{Z(t)} = 0 and 0'22 = 1. Thus, Z(¢) is much closer to
being stationary than X(t) was. Further, X(t) may be written

2(t) =

X(t) = mx(t) + ox(t)Z(¢)

which is just the sum of a deterministic signal mx(t) plus a random
process that looks something like equation (12.51). This type of analysis
has often been applied to transient phenomena such as vibration during
a Space Shuttle liftoff or noise measurements during an exhalation of
breath, where mx(t) and o x(t) may be estimated by ensemble averages
over repeated experiments.

The analysis of nonstationary processes is not in a very satisfactory
state and may, in fact, never be, although they are the topic of consider-
able current research. The difficulty lies in the fundamental importance
of the assumption of stationarity in the analysis and interpretation of
random data. Basically, the state of the art is that one tries to make the
nonstationary signal look enough like a stationary signal that station-
ary techniques may be used. Recently, 34 this approach has been placed
on a firm foundation by a unified theory that considers more general
types of invariance under transformation in addition to independence
of the origin of time, which led to the concept of stationarity.
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